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Abstract. A library search is a widely used method for the reconstruction
of diffraction structures in optical scatterometry. In a library search, if the
actual geometrical model of a measured signature is different from the
model used in the establishment of a library, the search result will be
meaningless. Therefore, the identification of the geometrical profile for
a measured signature is critical. In addition, fast searching of the library
is essential to find a best-matched signature even though the library may
have huge amounts of data. The authors propose a support vector
machine (SVM)-based method to deal with these issues. First, an SVM
classifier is trained to identify the geometrical profile of a diffraction struc-
ture from its measured signature, and then another set of several SVM
classifiers are trained to map the measured signature into a sublibrary
to accelerate the search process. Simulations and experiments have dem-
onstrated that the SVM classifier can identify the geometrical profile of
one-dimensional trapezoidal gratings accurately, and the SVM-based
library search strategy can achieve a fast and robust extraction of param-
eters for diffraction structures. © The Authors. Published by SPIE under a Creative
Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI:
10.1117/1.JMM.12.1.013004]
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1 Introduction
Optical scatterometry is a noncontact, nondestructive, and
accurate technique that is now widely used in the re-
construction of geometrical profiles for semiconductor struc-
tures.1,2 Generally, two procedures are required in this
technique. The first one involves simulation of the optical
signature from a diffraction structure using reliable forward
modeling techniques, such as rigorous coupled-wave analy-
sis (RCWA),3,4 the boundary element method,5 or the finite-
difference time-domain method.6 The second procedure
involves the reconstruction of the semiconductor structures
from the measured signatures, which is a typical inverse
problem.

To solve the inverse problem in optical scatterometry, sev-
eral approaches have been reported in recent years. Drège et
al. presented a linear approach to obtain surface profile infor-
mation by the linearized inversion of scatterometric data.7

Since a highly nonlinear relationship exists between the opti-
cal signature and the profile parameters, the linear approach
has its inherent limitations. Some nonlinear optimization
approaches, such as the Levenberg-Marquardt (LM) algo-
rithm and its improved technique by combining with artifi-
cial neural network (ANN), have also been proposed.8–10 The
optimization approach is usually time-consuming, as the
structural profile is achieved through an iterative procedure
that repeatedly requires computation of the forward optical

modeling. This is even worse and unacceptable when dealing
with two-dimensional structures or more complex structures.
Most recently, Jin et al. reported a support vector machine
(SVM) based method,11 in which the measured diffraction
signatures were inputted into a trained SVM to directly
obtain the values of profile parameters as outputs.
Although it is quite similar to the ANN-based method,12,13

the SVM-based method can to some extent achieve an opti-
mal result under conditions of limited information. This is
because ANN is based on the principle of experience risk
minimization while SVM is a machine learning algorithm
based on statistical learning theory (SLT).14,15 Consequently,
the SVM-based method can obtain a better generalization
performance.16–18

The library search has been developed for several decades
and has been demonstrated to be an effective approach to
solve the inverse problem in optical scatterometry.19 Due
to the robustness and convenience of this method, it is
commonly used in industry. In a library search, a signature
library is built up in advance by using different combinations
of profile parameters, and the experimental signature is
compared with the library for the best match. Before building
the signature library, the geometrical model of the structure is
often assumed to be known, and then the signatures in the
library are simulated using forward modeling techniques
from the model. However, there exists an issue when a
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wrong model is used, i.e., the real geometrical profile of a
structure is quite different from the geometrical model
used in the forward modeling, the solution to the inverse
problem will lead to an inaccurate or erroneous result.

Another issue in library search is the fast and accurate
search of a simulated signature for a measured one when
the signature library grows increasingly large. Seeking for
the most similar simulated signature in a library for a
measured one is a typical nearest neighbor search problem.20

Currently, most of the efforts to solve this problem are made
by developing efficient search algorithms with an emphasis
on matching accurately and rapidly. Although some typical
search algorithms such as the linear search and k-dimen-
sional (k-d) tree search can ensure an exact result,21,22 the
search time is usually unacceptable when the library is
very large. The locality-sensitive hashing (LSH) is another
kind of method to improve the search speed,23 but as a ran-
domized algorithm, it does not guarantee an exact result but
guarantees a high probability for a correct result or one close
to it. In addition to developing efficient search algorithms, it
is highly desirable to reduce the search space of the library to
as small as possible.

In this paper, we propose an SVM-based method to deal
with two issues in library search for optical scatterometry.
For the first issue, the identification of geometrical profile,
we generate an SVM classifier whose input denotes the opti-
cal signature and the output denotes its corresponding geo-
metrical model. For the second issue, the fast search of
simulated signature for the measured one in the signature
library, we also generate another set of several SVM classi-
fiers to divide the large library into many small sublibraries.
In the sublibrary, we can use some traditional search
algorithms, such as linear search and k-d tree search meth-
ods, to accurately search for the optimal simulated signature.
Though similar in some aspects to the pioneering work
reported in Ref. 11, there are two main concepts in this
paper, namely, the identification of geometrical profiles
(i.e., the selection among geometrical models) by SVM
and the fast extraction of geometrical parameters by adding
SVM into the traditional search method. As a sublibrary is
only a part of the whole library, the search in the small range
would be much faster than in the whole library. It is also
possible to further increase the search speed by dividing
the whole library into more sublibraries and training the cor-
responding new SVM classifiers, and this becomes important
and meaningful when the whole library is huge and the hard-
ware resources are limited.

The remainder of this paper is organized as follows.
Section 2 introduces the principle of SVM, and then
describes the SVM-based library search strategy in detail.
Section 3 provides some simulation and experimental results
to verify the proposed SVM method. Finally, we draw some
conclusions in Sec. 4.

2 Theory

2.1 Principle of SVM

SVM was originally designed to solve the binary classifica-
tion problem, and the key of SVM is its kernel function.13 By
using a proper kernel function, we can nonlinearly map the
input signatures to a high-dimensional feature space. Then,
in the high-dimensional feature space, we can construct an

optimal separating hyperplane so that we can classify those
signatures. For a binary classification problem, the training
pairs are represented as

ðx1; y1Þ; ðx2; y2Þ; : : : ; ðxN; yNÞ; xi ∈ Rn; yi ∈ f−1; 1g;
i ¼ 1; 2; : : : ; N; (1)

where xi is an n-dimensional vector representing the ith
training signature, yi is a scalar with two values of −1
and 1 representing two classes, and N is the number of train-
ing pairs. The training pairs are used in the training of an
SVM classifier.

For a measured signature x, the value of a decision func-
tion fðxÞ determines which class x belongs to. The decision
function can be expressed as

fðxÞ ¼ sign½w · ψðxÞ þ b�; (2)

where ψðxÞ is a mapping function of x, b is a bias, and w is a
support vector that can be expressed as a linear combination
of ψðxiÞ:

w ¼
XN
i¼1

λiyiψðxiÞ; (3)

where λi is the weight coefficient of the ith input signature.
By substituting Eq. (3) into Eq. (2), and by defining a new
function

kðx; xiÞ ¼ ψðxiÞ ⋅ ψðxÞ; (4)

we can get the final expression of the decision function as

fðxÞ ¼ sign

�XN
i¼1

λiyikðx; xiÞ þ b

�
: (5)

The function kðx; xiÞ in Eqs. (4) and (5) is called the ker-
nel function, which plays an important role in SVM. Several
kernel functions, such as the linear kernel, polynomial ker-
nel, Sigmoid kernel, and radial basis function (RBF) kernel
have been applied in SVM to suit for different situations.
Different kernel functions have different adjustable parame-
ters, which may have different influence on the final classi-
fication result for SVM. In this paper, we choose the RBF as
the kernel of all the SVMs used in the identification of
geometrical profiles and in the SVM-based library search.
The RBF kernel is expressed as

kðx; xiÞ ¼ exp ð−rkx − xik2Þ; (6)

where the scaling factor r is the adjustable parameter, and
k ⋅ k2 represents the 2-norm.

It should be pointed out that SVM was originally
designed to solve the binary classification problem, but
most of the classification problems can be attributed to a
multiclassification one. Recently, researchers have devel-
oped several multiclassification SVM algorithms such as
“one-against-all,” “one-against-one,” and directed acyclic
SVM.24 In this paper, we simply use the support vector
machines tool for multiclassification developed by Chang
and Lin.25
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2.2 SVM-Based Library Search Strategy

In this paper, we divide the reconstruction of diffraction
structures by the SVM-based library search into three
steps, as shown in the flowchart of Fig. 1. The first step
is the identification of the geometrical profile model for a
diffraction structure by its measured optical signature Em.
Then in the second step, the measured signature Em with
its profile model identified is mapped into a sublibrary
that is a subset of the whole signature library. Finally, in
the third step, a search algorithm is used to find the most
similar simulated signature for the measured signature Em.

For the first step, an SVM classifier is used to identify the
geometrical profile of a structure by its measured optical sig-
nature. The SVM classifier is trained off-line in advance, and
training pairs should be prepared for the training. Then test-
ing pairs are inputted into the trained SVM classifier to test
its identification accuracy. Here we define the identification
accuracy as the number of the correctly identified testing
pairs divided by the total number of testing pairs. For the
generation of training pairs, we translate the profile informa-
tion of each structure into a numeric form. Supposing that
there areM possible geometrical profiles caused by the proc-
ess variations of semiconductor fabrication for an ideal trap-
ezoidal grating, and the possible geometrical profile m in the
M profiles is represented by a unique numeric “m”. This
means that the number of output classes of the SVM classi-
fier is the same as the number of the geometrical profiles. In
the case of the M-profiles identification problem, the total
training pairs are composed of a mixture of M subsets.
The subset m in the M subsets contains a number of pairs
calculated from geometrical parameters of the profile m in
a defined variation range, and each training pair is composed
of the optical signature and the unique numeric “m” desig-
nating the geometrical profilem. After selection of the kernel
function and preparation of training pairs, we train the SVM
classifier to produce numeric “m” for every optical signature
of the geometrical profile m. Once the training stops, the
trained SVM classifier can be used to identify the geomet-
rical profiles of structures, i.e., to select the geometrical
models.

In the second step, the measured signature Em with its
profile model identified is mapped into a sublibrary by
another set of several trained SVM classifiers. The sublibrary
is a subset of the whole signature library that is commonly
used in the traditional library search method. As there are M
possible geometrical profiles for the measured signature Em,
we establish M signature libraries in advance for the M pro-
files, respectively, and each signature library is divided into

several sublibraries. Before mapping the measured signature
into its corresponding sublibrary, we need to perform three
substeps off-line in advance, including (1) the division of
variation ranges of geometrical parameters, (2) the establish-
ment of sublibraries, and (3) the training of SVM classifiers.
In the substep 1 as shown in Fig. 2, we take three geometrical
parameters, namely, critical dimension (CD), depth, and
sidewall angle (SWA) into account. The variation range of
each geometrical parameter represented by a long rectangu-
lar is divided into two subranges, and each subrange is rep-
resented by a short rectangle with a unique color. Then we
select a subrange from the range of each geometrical param-
eter to form a set of subranges, thus we have eight sets of
subranges total as shown in the large ellipse in Fig. 2.
Here we only take the binary division as an example, but
actually, the number of subranges is a user-defined variable.
The substep 2 involves the establishment of each sublibrary
based on its corresponding set of subranges. We generate a
series of discrete values equidistantly for each subrange, and
then we select three values in total from each of the sub-
ranges of CD, depth, and SWA to completely characterize
the trapezoidal grating. Finally, we generate the simulated
diffraction signature for the selected set of values of geomet-
rical parameters and store it in the sublibrary. We can estab-
lish the whole sublibrary by repeatedly choosing a different
set of discrete values of geometrical parameters in the set of
subranges, and following this, all the sublibraries can be
established. The substep 3 is to train the SVM classifiers
by generating training pairs. We generate three SVM
classifiers with each one corresponding to a geometrical
parameter, as there are three geometrical parameters to be
extracted. Since the range of each parameter is divided
into several subranges, its corresponding classifier has
several classes with each one corresponding to a different
subrange. The optical signatures are generated by randomly
varying the values of geometrical parameters in the ranges of
geometrical parameters for each class. We combine the opti-
cal signatures and their corresponding class to form the train-
ing pairs and to train each SVM classifier. Once all the SVM
classifiers are generated and trained off-line, we will use
them to quickly map the measured signature of a trapezoidal
grating to its corresponding sublibrary.

Finally in the third step, we simply use some search algo-
rithms to find the most similar simulated signature for the
measured signature Em in the mapped sublibrary. We can
use a typical search algorithm, such as the linear search
method or the k-d tree method, to search for the nearest
neighbor of the measured signature Em. The search in the

Fig. 1 Flowchart of the SVM-based library search strategy.
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sublibrary is expected to be much faster than in the whole
library, as the sublibrary is designed as a part of the whole
library.

3 Results

3.1 Description of the Grating Models

For the purpose of identification of geometrical profiles and
fast extraction of geometrical parameters, simulations and
experiments were conducted on a one-dimensional grating
structure. In our simulations, five profile models were used,
as shown in Fig. 3. The ideal one was a one-dimensional
trapezoidal photoresist grating with a period of 400 nm
deposited on a silicon substrate that was coated with an
anti-reflective layer. This was defined as Model A with

three geometrical parameters, including the top CD,
depth D, and sidewall angle SWA. Four other profile
models, shown as Model B to Model E in Fig. 3, were
used to describe the real geometrical profiles that deviated
from the ideal one because of the process variations in lithog-
raphy. Compared to Model A, a parameter R defining the top
rounding was added in Model B. The bottom footing was
also considered in Model C, which was represented by six
geometrical parameters. In model D, the lateral
offset expressed by G was further taken into account.
Model E was an extreme case for a sinusoidal
profile with only two geometrical parameters A and B,
respectively defining the amplitude of the sinusoidal grating
and the offset between the middle and the bottom of the
profile.

depth

CD

SWA

Sub-library 1

Ranges of 
parameters for 

classifier 1

Ranges of 
parameters for 

classifier 2

Ranges of 
parameters for 

classifier 3

Class 1
Class 1

Class 1

Class 2
Class 2

Class 2

Sub-library 2 Sub-library 3 Sub-library 4

Sub-library 5 Sub-library 6 Sub-library 7 Sub-library 8

Fig. 2 The division of variation ranges of geometrical parameters for generating a set of SVM classifiers and sublibraries.

 

Fig. 3 The trapezoidal grating structure with different profile models.
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3.2 Simulations for Identification of Geometrical
Profiles

We performed simulations to test the capability of the pro-
posed SVM method in the identification of geometrical pro-
files, i.e., in the selection among profile models. The five
profile models as shown in Fig. 3 were used for testing.
We first generated the training pairs by randomly choosing
values of the geometrical parameters in the following
variation ranges: 290 < D < 320 nm; 290 < D1 < 320 nm;
10 < D2 < 50 nm; 150 < CD < 190 nm; 86 deg < SWA
< 90 deg; 86 deg < SWA1 < 90 deg; 80 deg < SWA2

< 85 deg; 10<R<50 nm; 10<G<50 nm; 150<A<190 nm;
and 150 < B < 190 nm. We then trained the SVM classifier
using the training approach discussed above in Sec. 2.2.
Once the SVM classifier was successfully trained, another
set of testing pairs of optical signatures were randomly gen-
erated in the same ranges and were used to test the trained
SVM classifier. The in-house forward modeling software
based on RCWA was applied to simulate the optical signa-
tures for spectroscopic elliposometry, with the incidence
angle fixed at 65 deg and the wavelength varied between
380 nm and 780 nm by an increment of 10 nm.

The scaling factor r in the RBF kernel shown in Eq. (6)
plays an important role in the performance of SVM, thus it
should be carefully tuned to the problem at hand. If it is over-
estimated, the exponential will behave almost linearly and

the higher-dimensional projection will start to lose its non-
linear power. Otherwise, if it is underestimated, the function
will lack regularization, and the decision boundary will be
highly sensitive to noise in training data. Therefore, we
first performed particular simulations to estimate the effects
of the scaling factor r and the number of training signatures
N on the identification accuracy. For each profile model, we
randomly generated 250 testing pairs of optical signatures,
thus we had totally 1250 testing pairs. The simulation results
for such a test are shown in Fig. 4.

From Fig. 4(a), it is clear that for all five different values
of scaling factor r, the identification accuracy increases with
the number of training pairs N increasing, and this increasing
trend is more obvious when the scaling factor becomes
larger. As expected, the scaling factor does play an important
role in the identification accuracy. When the number of train-
ing pairs is small, e.g., being 1000, the larger the scaling
factor is, the smaller the identification accuracy becomes.
However, when the number of training pairs becomes
large enough, e.g., being 5000, a larger value of the scaling
factor achieves a higher identification accuracy. Again in
Fig. 4(b), we can easily find that the identification accuracy
increases with the number of training pairs increasing for
each given scaling factor. It is also interesting to note that
the identification accuracy usually decreases with the scaling
factor, except when the number of training pairs becomes
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Fig. 4 The identification accuracy varies with (a) the number of training pairs and (b) the scaling factor in the RBF kernel.
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Fig. 5 The impact of noise on the identification accuracy with (a) the scaling factor fixed as 150 and (b) the number of the training pairs as 5000.
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very large. All these simulations indicate that for a given
scaling factor, the number of training pairs should be
carefully selected as well, so that the highest identification
accuracy can be obtained. In our simulations, an optimal
combination of the scaling factor and the number of training
pairs is 150 and 5000, respectively.

The measurement noise is also an important factor to in-
fluence the performance of the SVM classifier. Therefore, we
performed another set of simulations by adding Gaussian
noise into the testing signatures. Here the noise order of mag-
nitude was defined as the ratio of the standard deviation of
the added Gaussian noise to the mean value of the simulated
signatures.26 Figure 5 depicts the simulation results, with the
scaling factor fixed as 150 in Fig. 5(a) and the number of
training pairs fixed as 5000 in Fig. 5(b). It is expected
from Fig. 5 that the identification accuracy decreases with
the noise order of magnitude increasing. It is also interesting
to note that for each given number of testing pairs shown in
Fig. 5(a) and for each given scaling factor shown in Fig. 5(b),
there is always a range of the noise order where the identi-
fication accuracy remains the highest. The identification
accuracy does not drop remarkably until the noise order
becomes large enough to be beyond this range. This

means that the identification accuracy is not so sensitive
to noise in this range, which is hence called the noise-insen-
sitive range with the noise order from zero to a very small
value. Once the noise order further increases, the identifica-
tion accuracy starts to decrease sharply and finally reaches a
stable small value of 20%. This is because all the testing sig-
natures are classified to Model E when the noise order is
larger than a specific value. Furthermore, from Fig. 5 we
can observe that the highest identification accuracy in the
noise-insensitive range increases with either the scaling fac-
tor or the number of testing pairs increasing. This indicates
that the larger the scaling factor or the number of testing pairs
is, the less sensitive to noise the corresponding trained SVM
classifier becomes.

3.3 Simulations for Extraction of Geometrical
Parameters

We next continued our simulations to apply the SVM-based
library search strategy in the extraction of geometrical
parameters from optical signatures. Only the trapezoidal gra-
ting with three geometrical parameters D, CD, and SWAwas
taken as an example to demonstrate the extraction process.
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Fig. 6 The search time and extracted errors of depth, CD, and SWA by (a) the linear search method and (b) the SVM-based method (with four
sublibraries and two classifiers).
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The variation ranges for the three geometrical parameters are
the same as in Sec. 3.2. We generated two different sets of
sublibraries to verify the proposed SVM method. One con-
tained four sublibraries with two SVM classifiers, and the
other eight sublibraries with three SVM classifiers. For
the library search strategy with two SVM classifiers, both
the ranges of CD and SWAwere divided into two subranges
except D. For the library search strategy with three SVM
classifiers, all the ranges of D, CD, and SWA were divided
into two subranges. We then applied the proposed method to
establish the sublibraries and to train the SVM classifiers.
The number of training pairs for each class was chosen as
5000, the scaling factor used in the RBF kernel was set
to 150, and the increments for D, CD and SWA to generate
the optical signatures were 0.5 nm, 0.5 nm, and 0.2 deg,
respectively.

Once the SVM classifiers were trained off-line success-
fully, we generated another set of testing pairs by adding
Gaussian noise with noise order of magnitude 0.001 to
the testing optical signatures. The errors of extracted param-
eters and the search time by the SVM-based library search
strategy were compared with those by the linear search
method in the whole library. The simulation results are
shown in Figs. 6 to 9, and the 3σ errors of extracted

parameters by the linear search and by the SVM-based
method with different numbers of sublibraries are summa-
rized in Table 1. We can observe that the errors of extracted
parameters by the two different methods are in the same
magnitude when the initial condition was set properly. In
Fig. 7, the search speed by the SVM-based method with
two classifiers is at least four times faster than that by the
linear search. And in Fig. 9, the search speed by the
SVM-based method with three classifiers is even faster,
i.e., it is at least eight times faster than that by the linear
search. It thus has demonstrated that the proposed SVM-
based library search strategy is not only accurate enough,
but also speed-controllable.

3.4 Experiments

We performed experiments on a dual-rotating-compensator
ellipsometer (RC2 ellipsometer, J. A. Woollam Co.) to
validate the proposed SVM-based library search strategy.
The wavelengths available were in the range of 193 to
1690 nm including the range of 380 to 780 nm used in
this paper, and the incidence angle was fixed at 65 deg.
We obtained and used the ellipsometric parameters as optical
signatures of the measured sample. As shown in Fig. 10, the
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Fig. 8 The search time and extracted errors of depth, CD, and SWA by (a) the linear search method and (b) the SVM-based method (with eight
sublibraries and three classifiers).
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measured sample is a one-dimensional trapezoidal photo-
resist grating with a profile model characterized by three
geometrical parameters of depth, CD, and SWA. The CD
was 172 nm as measured by scanning electron microscopy.

We repeatedly measured the grating sample 10 times as
different measurements might contain different noise levels.
Then we input the measured signatures one by one into the
trained SVM classifier as described in Sec. 3.2 to identify
their geometrical profiles (i.e., to select their profile models).
Note that for training the SVM classifier, the values of the
bottom footing D2, the top rounding R, and the lateral offset
G were all set between 10 nm and 50 nm, which means that
any grating profile with D2, R, and G less than 10 nm should
be identified as Model A. From this point of view, all the 10
measured signatures were correctly classified to Model A,

indicating that the fabricated grating sample was very
close to an ideally trapezoidal profile with the bottom foot-
ing, the top rounding, and the lateral offset being too small to
be considered. Once the geometrical profile of the grating
sample was identified to be Model A, we finally applied a
set of three SVM classifiers with eight sublibraries as
described in Sec. 3.3 to extract the geometrical parameters.
Here for the experiments, the increments of depth, CD, and
SWA used in the establishment of sublibraries were set to
1 nm, 1 nm, and 0.1 deg, respectively. Figure 11 is a com-
parison of the simulated and measured signatures for the best
match in one measurement with the extracted depth, CD, and
SWA being 303 nm, 162 nm, and 87.6 deg, respectively.
Table 2 depicts the comparison of all the extracted results
by the SVM-based library search and the linear search

Table 1 3σ errors of extracted parameters by the linear search and the SVM-based methods.

Classifier type

3σ error of D (nm) 3σ error of CD (nm) 3σ error of SWA (°)

Linear SVM-based Linear SVM-based Linear SVM-based

3 classifiers 0.4607 0.4719 1.2553 1.3311 0.20584 0.20874

2 classifiers 0.4607 0.4793 1.2553 1.3043 0.20584 0.20924

Si 

(a) (b)

Fig. 10 The one-dimensional trapezoidal photoresist grating sample under measurement. (a) The profile model and (b) the top-down scanning
electron microscopy view.
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methods. It is clear that all the extracted results by the two
methods are the same, but the search time by the SVM-
based method is only about 10% of that by the linear search
method. Therefore, it has demonstrated that the SVM-based
library search strategy is a fast and accurate method that can
be applied in the reconstruction of diffraction structures.

4 Conclusions
In this paper, we have introduced the SVM method to deal
with two issues in the identification and reconstruction of
diffraction structures. For the first issue, which is the iden-
tification of the geometrical profiles, we generate an SVM
classifier to map an optical signature to its corresponding
geometrical profile. Our simulations and experiments have
shown that the SVM classifier can accurately identify the
geometrical profile of one-dimensional trapezoidal grating
even though some noise exists in the signatures.

For the second issue, which is the fast search of simulated
signature for the measured one in the signature library, we
proposed an SVM-based library search strategy. Several
multiclassification SVM classifiers are trained off-line,
and then they are used to map the measured signature
into its corresponding sublibrary. By searching in the subli-
brary, the search time can be reduced dramatically compared
to the linear search in the whole library. The simulations and
experiments have demonstrated that the SVM-based library
search strategy can achieve a robust and fast extraction of
structural parameters.
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