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Abstract. Optical proximity correction (OPC) is a resolution enhancement technique extensively used in the
semiconductor industry to improve the resolution and pattern fidelity of optical lithography. In pixel-based
OPC (PBOPC), the layout is divided into small pixels, which are then iteratively modified until the simulated
print image on the wafer matches the desired pattern. However, the increasing complexity and size of modern
integrated circuits make PBOPC techniques quite computationally intensive. This paper focuses on developing a
practical and efficient PBOPC algorithm based on a nonparametric kernel regression, a well-known technique in
machine learning. Specifically, we estimate the OPC patterns based on the geometric characteristics of the
original layout corresponding to the same region and a series of training examples. Experimental results on
metal layers show that our proposed approach significantly improves the speed of a current professional
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1 Introduction

The semiconductor industry has relied on resolution
enhancement techniques (RET) to compensate and minimize
mask distortions as they are projected onto semiconductor
wafers.' Resolution in optical lithography obeys the
Rayleigh resolution limit R = k;(4/NA), where 1 is the
wavelength, NA is the numerical aperture, and k, is the proc-
ess constant which can be minimized through RET meth-
0ds.”!> Optical proximity correction (OPC) is one of the
key RETs that modifies the mask pattern to precompensate
for imaging distortions.

In general, OPC approaches are divided into two classes:
rule-based and model-based approaches.” Rule-based
approaches are mostly heuristic and are simple to implement,
but can only compensate the warping in local features. On
the other hand, model-based approaches use physical or
mathematical models to represent the image formation proc-
ess of the optical lithography system,'®!” and iteratively seek
the global minimization of the cost function to improve the
image fidelity on the wafer. There are two types of model-
based OPCs: edge-based OPC (EBOPC) and pixel-based
OPC (PBOPC). EBOPC decomposes the mask into edges
and corners and optimizes their locations, while pixel-
based OPC decomposes the mask into small pixels and opti-
mizes their transmission coefficients.'"® Compared to
EBOPC, PBOPC has more degrees of freedom during the
optimization process, and may insert subresolution assistant
features (SRAFs) around main mask features to further
improve image fidelity.

*Address all correspondence to: Yangiu Li, E-mail: liyanqgiu@bit.edu.cn
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In the past few decades, several PBOPC approaches have
been proposed for advanced optical lithography to enhance
the imaging performance at nominal settings'*~’ or over a
range of process variations.”®>! Although pixel-based
approaches are effective for improving the imaging perfor-
mance of lithography systems, these approaches are compu-
tationally intensive, especially for the current sophisticated
large-scale masks. To alleviate this, a number of methods
have been developed to accelerate the OPC design process.
Frye et al. used neural networks to compensate for electron
scattering effects in E-beam lithography systems resulting in
a significant reduction in computation time as compared to
iterative algorithms.” Jedrasik proposed a neural network
approach for one step OPC.** Recently, Huang et al. devel-
oped a method to train a neural network to map the fragment
movements.’* Gu and Zakhor generalized this idea and
proposed a method based on linear regression to provide
an initial estimate for the movement of edges and corners
in EBOPC.'"® Then, Gao et al. improved upon Gu and
Zakhor by using principle component regression.> These
initialization strategies can effectively reduce the number
of iterations required for the EBOPC algorithms to converge
and thereby reduce the overall runtime.'®> These methods
mentioned above opened a new line of research for efficient
OPC solutions. However, it is desirable to use more
advanced strategy to effectively improve the computational
efficiency of PBOPC, which has many more degrees of free-
dom than EBOPC, for optical lithography systems.

In order to effectively speed up the current professional
PBOPC software, this paper develops a fast PBOPC
algorithm based on nonparametric kernel regression that is
a well-known technique in machine learning. Our approach
can be described as follows: First, training data are collected
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from the OPC pattern of a chip as computed by the profes-
sional PBOPC software Calibre pxOPC.*® Subsequently, the
test layout to be optimized is divided into three kinds of
regions: convex corners, concave corners, and edges.
Then, the nonparametric kernel regression is independently
applied to these three kinds of regions. After that, the regres-
sion results are stitched up to compose the entire OPC pattern
for the test layout. Finally, a postprocessing step is proposed
to modify the regressed OPC pattern to further improve the
image fidelity and to reduce the mask complexity. The pro-
posed algorithm is tested using metal layers at 90- and 45-nm
technology nodes. Simulations show that the proposed
method significantly improves the speed of Calibre
pxOPC software by a factor of 2 to 3, and may further reduce
the mask complexity. It is noted that although the implemen-
tation of the proposed method is based on Calibre pxOPC
software in this paper, the basic idea and fundamental frame-
work can be extended to some other PBOPC approaches.

The remainder of this paper is organized as follows: the
nonparametric kernel regression method used in our algo-
rithm is discussed in Sec. 2. The training data collection
process is described in Sec. 3. The fast PBOPC algorithm
based on nonparametric kernel regression is developed in
Sec. 4. Simulations are illustrated in Sec. 5, where the effects
of the proposed algorithm on mask synthesis are shown.
Conclusions are in Sec. 6.

2 Nonparametric Kernel Regression

2.1 Regression Techniques

Suppose there are two sets of data X and y having the follow-
ing relationship:

y=r&) +e M

where f() is an arbitrary function and € is an error vector.
Regression is a statistical technique which models the
dependence of the output y on the input features x.*’
There are two classes of regression techniques: parametric
and nonparametric. In parametric regression, f( ) is assumed
to be a global function with a known form but unknown
parameters to be estimated. While parametric models such
as linear regression remain the most popular techniques in
data modeling, they are often too rigid to model general non-
linear patterns hidden in a high-dimensional data space.*® On
the other hand, nonparametric regression methods are suit-
able for nonlinear problems, where f() is assumed to be
a continuous function with an unknown form. The nonpara-
metric regression methods directly estimate the regression
function from the data rather than estimating the parame-
ters.*> PBOPC synthesis is a nonlinear problem in high-
dimensional data space, and we apply nonparametric regres-
sion method to our proposed PBOPC algorithm.

2.2 Nonparametric Kernel Regression

Nonparametric kernel regression is a well-known technique
in machine learning. A variety of nonparametric regression
approaches have been investigated in the literature.*>*! In
this paper, we adopt the kernel-based nonparametric regres-
sion method in our algorithm. The Nadaraya—Watson kernel
regression method was independently developed by

Nadaraya and Watson, and takes the general form:*>*

J. Micro/Nanolith. MEMS MOEMS

043007-2

§; _}-(5&) _ vazl j)iK(}l"}i)
r t) — = - ’
E?/:l K(x;, x;)

where X; and y; are the input and output training data at hand,
X, and y, are the input and output test data, and K(X,,X;) is
the kernel function. The training data imply the underlying
relationship between the input and output, and are collected
in advance to provide a priori knowledge for the test stage.
The test data are the incoming data that are presumed to obey
the input and output relationships inferred by the training
data. The kernel method estimates the output test data y,
based on the input test data X, and training data. A kernel
function measures the similarity between the observations
at X; and a given location X,, and weighs each y; to predict
¥,. Usually, K(%,, X;) is a continuous, monotonically decreas-
ing function with respect to the distance between X, and X;.
There are many choices for K(X,,%;).*" In this paper, we
choose the Gaussian kernel
N 1 1 2
K(x,, X;) :—exp<—— ), 3)
vor: 2

where £ is the bandwidth to control the smoothing range.
Particularly, in the PBOPC problem, ¥; is the sample vector
of the training layout, y; is the optimized OPC pattern cor-
respending to X;, X, is the sample vector of the test layout,
and y, is the prediction of the OPC pattern due to the regres-
sion algorithm corresponding to X,. The training data collec-
tion method is described in the next section.

(@)
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3 Training Data Collection

3.1 Input Training Data Collection

We divide the layout data into two parts: training and testing.
The training layout is used to build up the OPC training data-
sets to provide a priori knowledge for nonparametric kernel
regression, while the test layout is the mask to be optimized.
In this paper, we use two metal layers at 90- and 45-nm tech-
nology nodes in our simulations. In the future, we may inves-
tigate the proposed algorithm using test layouts with smaller
critical dimensions (CD). Similar to Gu et al.,'® the features
on the training layout are separated into three classes of frag-
ments: convex corners, concave corners, and edges. In Fig. 1,
the fragments shown in green, blue, and red are convex cor-
ners, concave corners, and edges, respectively. The input
training data X; consists of the samples around these frag-
ments. The sampling centers of the convex and concave cor-
ners are set to be the convex and concave vertices,
respectively, which are shown as points O; and O, in
Fig. 1(a). The sampling center of the edge is selected as
the midpoint of the edge boundary shown as Oj.
Generally, we denote the sampling center of each fragment
as O;. In our simulations, we first scan the entire layout using
the Calibre WORKbench window,*® and save every snapped
image of the layout with a resolution of 1 nm. Then,
MATLAB® is used to process the snaps and extract the coor-
dinates of all convex and concave corners and edge centers.

Around the sampling center O;, each fragment from the
90-nm metal layer is sampled at 5-nm per pixel in the sur-
rounding 1.28 x 1.28 um? area, and each fragment from the
45-nm metal layer is sampled at 3-nm per pixel in the sur-
rounding 0.768 x 0.768 um? area. As shown in Fig. 2(a), the
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Fig. 1 (a) Examples of the convex corner (left), concave corner (right), edge fragment (middle), and their
sampling centers, where the sampling centers are shown by points Oy, O,, and Os. (b) Examples of the
observation points, where point A is the convex vertex, point B is the concave vertex, points C, D, and E
are the observation points along the edge boundary. L is the parameter to control the density of the

observation points.

sampling centers of the layout are illustrated by the red
crosses. For each sampling center O;, we use an incremental
concentric circular sampling method to sample its surround-
ing environment, where the sampling positions are located
on a series of concentric circles around O;. Taking one of
the convex corners as an example, we illustrate the corre-
sponding sampling positions by black dots in Fig. 2(a).
On each homocentric circle around O;, the layout is equally
sampled in eight directions (up, down, left, right, up-left, up-
right, down-left, and down-right). Since OPC is essentially
an optical correction process, the intensity of light from a
source will decrease along with the increment of the distance
[F| from the source. For partially coherent illumination, the
impact strength of a source decreases at a rate somewhere
between 1/|7| and 1/|7|?, depending on the level of partial
coherence.! However, since we use relatively large partial
coherence factors in our following simulations, for simplicity
we approximately assume that the effects of a mask pattern
on the wafer obey the inverse square law,> which means that
the intensity of light from a source is proportional to 1/[7|>.**
In order to follow the quadratic pattern implied by the inverse
square law, the radius R; of the ;’th homocentric circle is
increased as R; = pixel X &/ nm, where pixel is the sam-
pling pixel size that is equal to 5 and 3 nm for the 90-
and 45-nm metal layers, respectively. a is the parameter
to control the distance between these homocentric circles.
Therefore, the sampling density is reduced proportionally

X x X

x

A e O
..:.. L

N
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:> X xox xox
x

to the square of the distance from the sampling center. In
our simulations, we choose @ = 2. In the sampling region,
there are seven homocentric sampling circles, thus, 57 sam-
pling points including the sampling center O;. Therefore, for
each O;, we obtain an input training vector x; € B>’, where
B = {0.1} is the binary set.

3.2 Output Training Data Collection

The output training data y; is the optimized OPC pattern cor-
responding to input training data X; as described in Sec. 3.1.
In this paper, the OPC pattern of training layout is obtained
by using the professional software Calibre pxOPC. In prac-
tice, any other PBOPC approach would work. Our simula-
tions are based on a vector optical model with wavelength
A = 193 nm. For the 90-nm metal layer, we use a dry lithog-
raphy system with NA = 0.75, ambient refractive index of 1,
and annular illumination with inner and outer partial coher-
ence factors of o, = 0.49 and o, = 0.79. For the 45-nm
metal layer, we use an immersion lithography system with
NA = 1.35, ambient refractive index of 1.44, and annular
illumination with inner and outer partial coherence factors
of 6y, = 0.584 and ¢, = 0.861. First, we run the Calibre
pxOPC on the entire training layout. Then, for each sampling
center O; on the layout, we capture its surrounding OPC pat-
tern as shown in Fig. 2(b), where the red crosses indicate the
locations of sampling centers corresponding to those in

xx

(b)

Fig. 2 Relationships between the input training data and the output training data. (a) The input training
data x; obtained by the incremental concentric circular sampling method, and (b) the output training data
y; calculated by Calibre pxOPC. White and grey represent the openings and opaque areas, respectively.
The locations of sampling centers are illustrated by the red crosses in both figures.
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Fig. 2(a). For the 90-nm metal layer, the area of the surround-
ing OPC pattern is 3.0 X 2.85 ym? and the pixel size is 5 nm;
thus, the captured OPC pattern is translated into the output
training vector y; € B3?%° where B = {0,1} is the binary
set. For the 45-nm metal layer, the area of the surrounding
OPC pattern is 1.8 X 1.8 yum? and the pixel size is 3 nm,
therefore, the output training vector is y; € B30000,
Figure 2 shows the relationship between the input training
data X; and the output training data y;. Based on this relation-
ship, we construct three training datasets corresponding to
convex, concave, and edge fragments, respectively. It is
noted that the training data pairs of (X;,y;) have a one-to-
many relationship, where the same X; may correspond to dif-
ferent y;’s. Basically, the one-to-many relationship results
from two causes. The first reason is that we use 57 sampling
points to represent the local geometries on the target pattern.
Thus, the training datasets build a map from a sparse sampled
space with a dimension of 57 to a large space with dimen-
sions of the OPC examples. On the other hand, the second
reason is that PBOPC synthesis is an ill-posed nonlinear
problem, where numerous input patterns can lead to the
same output pattern. This phenomenon is a physics-based
reality that is independent of the proposed methodology.
From this point of view, this one-to-many relationship guar-
antees the diversity of the training datasets, which is benefi-
cial for searching the optimal OPC solution. The influence of
the one-to-many relationship on the performance of the pro-
posed algorithm will be investigated and discussed at length
in our future work. According to Eq. (2), if several training
data pairs with the same x; are selected during the nonpara-
metric regression process, the regressed OPC solution is the
weighted average of the corresponding OPC examples
denoted by y,.

4 Fast Pixel-Based Optical Proximity Correction
Algorithm

This section describes the test stage of the proposed fast
PBOPC algorithm for a large-scale layout. As shown in
Fig. 3, we first divide the entire layout into several smaller
blocks. Each regressed OPC pattern is independently gener-
ated for each block using the method that will be described
shortly in Secs. 4.1-4.3. Then, we stitch all of the OPC pat-
terns together to obtain the entire OPC pattern for the large-
scale layout. The stitch-up method will be described in
Sec. 4.4. After that, we apply the postprocessing method
in Sec. 4.5 to further improve the image fidelity and to reduce
the mask complexity.

4.1 Input Test Data Collection

The input test data are denoted by x,, which represents the
local geometric characteristics of the test layout. A portion of
the metal layer is used for training, while another portion is
used for testing. Given a test layout to be optimized, the goal
of the proposed PBOPC algorithm is to synthesize its corre-
sponding OPC pattern based on a nonparametric kernel
regression method. The first step is to divide the entire layout

///
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Fig. 4 Division of the large-scale layout and removal of the boundary
effect.

into several smaller blocks as shown in Fig. 4. The left figure
in Fig. 4 is the entire layout, which is divided into nine
smaller blocks. For each block, we classify the features
on the test layout into three types of fragments: convex cor-
ners, concave corners, and edges. Then, observation points
are placed on the convex and concave vertices and along the
edge boundaries. During the test phase, the nonparametric
regression is independently performed around the convex,
concave, and edge observation points. The regions surround-
ing all observation points on the test pattern are replaced by
their regressed OPC solutions calculated by Eq. (2) to gen-
erate the output test data. An example of the observation
points for the layout in Fig. 1(a) is illustrated in Fig. 1(b).
In contrast to the input training data where there is only
one sampling center for each edge, there could be multiple
observation points along the edge in the input test data. The
density of the observation points along the edges can be con-
trolled by the parameter L. If the distribution of observation
points is too dense, the OPC design process becomes com-
putationally intensive. However, if the distribution is too
sparse, it is inadequate to capture the geometrical character-
istics of the underlying layout, and degrades the OPC per-
formance. In our simulations, for the 90-nm metal layer,
we choose L =450 nm, while the edges shorter than
150 nm are ignored and no observation point is placed on
them. For the 45-nm metal layer, we choose L = 270 nm,
while the edges shorter than 90 nm are ignored.

The second step is to sample the test layout around these
observation points using the incremental concentric circular
sampling method as described in Sec. 3.1. An area around
each observation point on the test layout is sampled to result
in the input test data X, € B>’.

4.2 [ayout Decomposition

Given a block of the test layout, the nonparametric regression
is independently performed around the convex, concave, and
edge observation points. Thus, we need to decompose the
test layout into a set of nonoverlapping regions spanned

Divide large-scale
layout into small
blocks

Apply nonparametric
regression for each
block

)

o)

Stitch up the regressed
OPC patterns of all Postprocessing

blocks

Fig. 3 Flowchart to solve for large-scale optical proximity correction (OPC) problem.
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Fig. 5 An example of the layout decomposition map (adopted and modified from Ref. 45), (a) the obser-
vation points on a part of the test layout, (b) the initial regions assigned to the observation points, and

(c) the layout decomposition map.

by different observation points. First, we set an initial region
for each observation point. Figure 5(a) shows a part of the
test layout with dimension of 1055 X 675 nm and the obser-
vation points on it.*> Figure 5(b) shows the initial region
assigned to every observation point. For the convex and con-
cave vertices, the initial regions are squares centered on the
vertices with a side length of w; = CD, where CD is the min-
imum line width on the test layout. For the observation points
on edges, the initial regions cover the edge boundaries with a
thickness of w; = CD. Subsequently, all of the initial regions
are extended to cover their surrounding areas. In particular,
the initial regions are simultaneously extended in the four
axis-parallel directions at the same speed. The extension
ends when the prescribed maximum extension width w,,
to be described shortly, is reached or one region starts to
“hit” another one. If the extended regions are too large, unex-
pected artifacts appear around the region boundaries when
generating the OPC pattern. On the other hand, if the
extended regions are too small, some of the useful assist fea-
tures around the main bodies in the layout are ignored. In our
proposed algorithm, the maximum extension width w, is
empirically chosen by users according to the OPC patterns
in the training datasets, such that the extended areas include
most of the assist features, while cutting off most of the unde-
sired artifacts. In the following simulations, the maximum
extension width is selected as w, =400 and 200 nm for
the 90- and 45-nm metal layers, respectively. The decom-
posed pattern is referred to as the layout decomposition
map. The decomposition map of the previous example is
shown in Fig. 5(c). The goal of the layout decomposition
is to cover all mask features with the decomposition map.
However, the decomposition map cannot completely cover
the centers of lines with a width larger than 2(w; + w,),
resulting in performance degradation. In order to fully
cover the patterns of different layouts, the value of w, should
be modified according to the maximum line width of the lay-
out under consideration. In addition, the area of each piece in
the decomposition map must be guaranteed to be smaller
than the OPC examples in training datasets by adjusting
the parameter L in Fig. 1(b). Thus, the region supported
by the OPC examples in training datasets described in
Sec. 3.2 is large enough to cover the entire corresponding
pieces in the decomposition map.

4.3 Nonparametric Kernel Regression for Optical
Proximity Correction Design

In Eq. (2), we substitute X; and y; with the input and output
training vectors obtained in Sec. 3, and substitute X, with the
input test vector obtained in Sec. 4.1. Therefore, the output
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test vector y, is estimated by the kernel method, resulting in a
continuously-valued PBOPC pattern. The value range of the
pixels on the continuously-valued PBOPC pattern is [0,1].
The continuously-valued y, from Eq. (2) is subsequently
thresholded by 0.5, resulting in a binary OPC pattern. In
our proposed algorithm, the nonparametric kernel regression
is independently performed on convex corners, concave cor-
ners, and edges on the test layout. For each observation
point, the regressed OPC pattern y, is truncated by the cor-
responding region on the layout decomposition map. In other
words, each region on the map is filled in with the corre-
sponding regressed OPC pattern computed via Eq. (2).
Finally, all pieces of the regressed OPC patterns are stitched
together without overlap to form the entire OPC pattern.
An illustrative example of the 90-nm metal layer is shown
in Fig. 6. In the top row, Fig. 6(a) is a portion of the target
pattern captured from the metal layer. Figure 6(b) is the cor-
responding PBOPC result calculated by the Calibre pxOPC
software, where we run the “open” operation four times, the
“decorate” operation six times, the “correction” operation six
times, the “refine” operation six times, and the “manufactur-
ing rule check (MRC)” operation 30 times. In the above flow,
the “open,” “decorate,” “correction,” “refine,” and “MRC”
are five jobs supported by Calibre pxOPC.* In particular,
the “open” operation reshapes the layout features by growing
the target shapes to ensure that the main feature is printable.
The “decorate” operation adds initial SRAFs to improve the
image quality. The “correction” operation corrects the image
by suppressing extra-printings and improving the edge place-
ment error (EPE) distribution on the main features. The
“refine” operation performs fine-grained optimization for
the best EPE root mean square and removes extra-printings.
The “MRC” operation ensures that the final mask satisfies
the predefined manufacturing constraints and the SRAFs
do not print. Figure 6(c) is the regressed OPC pattern
obtained by the proposed algorithm. In the bottom row,
Figs. 6(d) to 6(f) are the print images on the wafer corre-
sponding to the masks in Figs. 6(a) to 6(c), respectively.
In this simulation, N in Eq. (2) is set to be 5, and the band-
width £ in Eq. (3) is to be 1. Another example of the 45-nm
metal layer is shown in Fig. 7. In the Calibre pxOPC flow, we
run the “open” operation once, the “decorate” operation six
times, the “correction” operation eight times, the “refine”
operation six times, and the “MRC” operation 30 times.
The parameters of the proposed algorithm are the same as
those in Fig. 6. In this paper, all of the print images on
wafer are calculated by Calibre software. It is observed
that the Calibre pxOPC software effectively improves the im-
aging performance and successfully achieves print images
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(d)

Fig. 6 Performance comparison between Calibre pxOPC software and the proposed algorithm based on
the 90-nm metal layer. From left to right, the top row shows: (a) a portion of the target pattern, (b) the
PBOPC result calculated by Calibre pxOPC software, and (c) the regressed OPC pattern obtained by the
proposed algorithm. In the bottom row, (d), (e) and (f) are the print images corresponding to the masks in
(a), (b) and (c), respectively. White and black represent the openings and opaque areas, respectively.

perfectly on target. However, as shown in Figs. 6(f) and 7(f),
the print images of the regressed OPC patterns still include
some residual bridges, gaps, and extra-printings as marked
by the red boxes. That is because the regressed OPC pattern
is composed by the weighted average of N candidates chosen
from the training datasets. Thus, some portions on the
regressed OPC pattern are not optimal for the given optical
and resist conditions. These portions usually introduce
inferior image fidelity on the wafer. In addition, as shown
in Figs. 6(c) and 7(c), the proposed method is apt to produce
a lot of tiny and complex mask features that are difficult or
even impossible to fabricate. In order to fix these problems, a
postprocessing method is proposed in Sec. 4.5 to refine the
raw regressed OPC pattern in order to improve the final
image fidelity and to reduce the mask complexity.

4.4 Synthesis of Optical Proximity Correction Pattern
for Large-Scale Layout

As shown in Fig. 3, each regressed OPC pattern is independ-
ently generated for each block using the method described in
Secs. 4.1-4.3. Finally, we need to stitch all of the OPC pat-
terns together to obtain the entire OPC pattern for the large-
scale layout. As shown in Fig. 4, the left figure is the entire
layout, which is divided into nine smaller blocks. Polygons A
and B are located in blocks 2 and 5, respectively. Each poly-
gon has six observation points as shown by the black dots.
The three observation points in the lower part of polygon A
are very close to the boundary between blocks 2 and 5. In the
layout decomposition map, the regions spanned by these
observation points penetrate block 5. For the layout decom-
position map of block 5, if we just take the six observation
points on polygon B, and ignore the influence of the three
lower observation points on polygon A, the boundary effect
will be introduced, which is shown in the top right figure in
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Fig. 4. This naive layout decomposition map fails to include
the influence of polygon A. Therefore, when we stitch up the
OPC patterns for all blocks, some assistant features around
polygon A may be truncated, degrading the imaging perfor-
mance of the proposed algorithm.

The solution of the boundary effect is to include and con-
sider the observation points within the external boundary sur-
rounding each block. For example, when generating the
layout decomposition map of block 5, we take all observa-
tion points inside the red square, which is extended from the
original block in four directions. This method results in the
revised layout decomposition map for block 5 as shown in
the bottom right figure in Fig. 4. In the following simula-
tions, we set the thickness of the external boundary of
each block to be 650 nm for both 90- and 45-nm metal
layers. Figures 8(a) and 8(b) show the connection of four
regressed OPC blocks for the 90- and 45-nm metal layers,
respectively. The stitch boundaries are located in the gaps
between the red lines. Although the proposed method in
this section can remove most of the boundary effects,
some discontinuities of the OPC pattern still appear on
the stitch boundaries. However, these mask discontinuities
will be smoothed out by the following postprocessing
method that will be described in next section.

4.5 Postprocessing Method

As mentioned in Sec. 4.3, the OPC pattern directly syn-
thesized by the nonparametric regression method is not opti-
mal for the given optical and resist conditions, and usually
introduces some residual bridges, gaps, and extra-printings
in the print image. A bridge is the connection of separate
patterns, and a gap is the disconnection of continuous pat-
terns. Extra-printings are the unexpected imaging of the fea-
tures that are disconnected from the target pattern. In this
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@

Fig. 7 Performance comparison between Calibre pxOPC software and the proposed algorithm based on
the 45 nm metal layer. From left to right, the top row shows: (a) a portion of the target pattern, (b) the
PBOPC result calculated by Calibre pxOPC software, and (c) the regressed OPC pattern obtained by the
proposed algorithm. In the bottom row, (d), (e) and (f) are the print images corresponding to the masks in
(a), (b) and (c), respectively. White and black represent the openings and opaque areas, respectively.

section, we propose a postprocessing method to further
improve the image fidelity and to reduce the mask complex-
ity. In general, the postprocessing method includes three
steps as follows.

Step 1: Removal of extra-printings: Extra-printings are
likely to appear at the positions where the SRAFs
obtained by the regression method mismatch the optimal
ones. This step removes the extra-printings by modify-
ing the raw regressed OPC pattern according to the loca-
tions of these extra-printings. The print image of the raw
regressed OPC pattern is first calculated by Calibre soft-
ware, where all of the extra-printings on wafer are
detected. We define the raw regressed OPC pattern as
A, and the extra-printings on the wafer as B. Then
the modified OPC pattern C is calculated as

C=A-(A&B), )

where & represents the intersection of the two argu-
ments. By doing so, all SRAF areas overlapped with
the extra-printings are eliminated.

Step 2: Mask patching and truncating: Since the
regressed OPC pattern is calculated by a simple
weighted average of training examples followed by a
hard threshold operation, some irregular features,
such as holes, notches, and protuberances arise in the
regressed OPC pattern. These irregular features must
be regularized, since they may dramatically increase
the mask complexity and bring an inferior imaging per-
formance onto the wafer. To achieve this goal, we first
shrink the target pattern by 30 nm, and fill in all of the
holes and notches inside the area supported by the
shrunken target pattern. Subsequently, we dilate the tar-
get pattern outboard by 20 and 40 nm to form two
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contours, respectively. Then, we eliminate all the
mask protuberances attached to mainbody features
(rather than SRAFs) between the two contours men-
tioned above.

Step 3: Corner correction: The modified regressed OPC
pattern from the previous two steps is input to the
Calibre pxOPC software, and a few optimization itera-
tions are carried out to refine the mask corners in order
to further improve the image fidelity. In particular, we
run the “refine” operation four times to modify the
mask corners of the 90-nm metal layer, while we run
the “correction” operation two times and the “refine”
operation six times for the 45-nm metal layer.
Then, the MRC function of Calibre is applied to impose
the manufacturing constaints on the modified OPC
pattern and to finalize the postprocessing. We assign
the MRC parameters as follows: mrc_iterations = 30,
mrc_min _edge = 0.04 ym, mrcmininternal=0.02 ym,
and mrc_min _external = 0.04 ym. The ‘“correction”
and “refine” operations have been explained in Sec. 4.3.
Compared to the Calibre pxOPC flows described in
Sec. 4.3, the nonparametric regression method saves
four “open” operations, six “decorate” operations, six
“correction” operations, and two ‘“refine” operations
for the 90-nm metal layer, while it saves one “open”
operation, six “decorate” operations, and six ‘“correc-
tion” operations for the 45-nm metal layer.

The top and bottom rows of Fig. 9 illustrate the results of
the postprocessing method for the 90- and 45-nm metal
layers, respectively. For the 90-nm metal layer, the raw
regressed OPC pattern before postprocessing is shown in
Fig. 6(c). Figures 9(a) and 9(b) are the modified OPC pat-
terns after applying Steps 2 and 3 mentioned above, and
Fig. 9(c) is the final print image after applying the
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Fig. 8 The connection of four regressed OPC blocks for the (a) 90-nm metal layer and (b) 45-nm metal

layer.

postprocessing method. For the 45-nm metal layer, the raw
regressed OPC pattern is shown in Fig. 7(c). Figures 9(d) and
9(e) are the modified OPC patterns after applying Steps 2
and 3, and Fig. 9(f) is the final print image after applying
the postprocessing method. It is observed from Figs. 6, 7,
and 9 that the image fidelities of the regressed OPC patterns
after postprocessing are similar to those obtained by the
Calibre pxOPC software. In addition, the postprocessing
method can effectively reduce the complexity of the opti-
mized mask patterns.

5 Simulations

In this section, we present the simulations of the proposed
OPC method based on nonparametric kernel regression
using the 90- and 45-nm metal layers. Then we compare the
performance of Calibre pxOPC software and the proposed
method with respect to the image fidelity, computational

efficiency, and mask complexity. In the following simula-
tions, the parameters of the optical models are the same
as those described in Sec. 3.2. For the 90-nm metal layer,
a 42 x 36 um? portion in the right area of the entire layout
serves as the training pattern to build the training dataset. The
training dataset includes 4000 convex vertices, 2000 concave
vertices, and 10,000 edge fragments. A 48 X 45.6 um?
region captured from the central area of the entire layout
is used as the test pattern to be optimized. We divide the
test pattern into 16 X 16 smaller blocks, each of which has
dimensions of 3 x 2.85 um?. The proposed algorithm is per-
formed on each of the smaller blocks. The entire OPC pattern
is composed by aligning and stitching up all OPC patterns
for each block without overlapping. For the 45-nm metal
layer, a 42 x 42 yum? portion in the right area of the entire
layout is used as the training pattern. The training dataset
includes 6000 convex vertices, 4000 concave vertices, and

Fig. 9 The results of the postprocessing method for the 90- and 45-nm metal layers. The top row shows
the resulting OPC patterns for 90-nm metal layer after applying (a) Step 2 and (b) Step 3, and (c) the final
printimage after applying the postprocessing method. The bottom row shows the resulting OPC patterns
for 45-nm metal layer after applying (d) Step 2 and (e) Step 3, and (f) the final print image after applying
the postprocessing method. White and black represent the openings and opaque areas, respectively.
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10,000 edge fragments. A 14.4 x 14.4 um? region captured
from the central area of the entire layout is used as the test
pattern. We divide the test pattern into 8 X 8 smaller blocks,
each of which has dimensions of 1.8 x 1.8 ym?2. In order to
further accelerate the proposed algorithm, we translate all
output training data into binary files, and read all training
data into memory before the regression process. Thus, our
program can load training data directly from memory rather
than from the hard drive. As an example, the simulation
results corresponding to a small portion on the 90- and
45-nm metal layers have been provided in Figs. 6, 7, and
9. In these simulations, N in Eq. (2) is set to be 5, and
the bandwidth % in Eq. (3) is 1. Other parameters of the pro-
posed algorithm have been described in Sec. 4. Based on
these illustrative results, we conclude that the OPC solutions
and print images resulting from the proposed algorithm and
Calibre pxOPC are visually similar.

In the following, we quantitatively compare the perfor-
mance between the proposed algorithm and Calibre
pxOPC software with respect to image fidelity, computa-
tional efficiency, and mask complexity. We first use the met-
ric of EPE and the pattern error to compare the image fidelity
performance between these two methods. The pattern error is
defined as the area of the difference region between the print
image and the target pattern. We use Calibre to detect and
collect all sites on the print images with an absolute EPE
value (|EPE|) larger than 3 nm. Then, we normalize the
site number to 2000 and plot the histograms in Fig. 10 to
show the distributions of |EPE| values. Figures 10(a) and
10(b) are the histograms for the 90- and 45-nm metal layers,
respectively. Table 1 summarizes the distributions of |EPE]
values for these 2000 detected sites with different methods.
The initial mask patterns without optimization lead to many
large |EPE| values falling in the range of [20, 35 nm), while
the Calibre pxOPC and the proposed algorithm can effec-
tively suppress the |EPE| values by concentrating most of
them into the range of [0, 20 nm). The third row of
Table 2 provides the average |EPE| values, which is defined
as the sum of all |EPE]| values divided by the detected site
count. The fourth row of Table 2 provides the pattern errors.
For the 90-nm metal layer, compared to the initial mask pat-
tern, Calibre pxOPC and the proposed algorithm may reduce
the average |EPE| by 84% and 81%, while reducing the pat-
tern error by 93% and 92%, respectively. The average |[EPE|

1600 — —— I
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> 800
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(a) |[EPE| (nm)

Count of detected sites

and pattern error of the proposed algorithm are 16% and 21%
higher than Calibre pxOPC. For the 45-nm metal layer, com-
pared to the initial mask pattern, Calibre pxOPC and the pro-
posed algorithm may reduce the average |EPE| by 62% and
58%, while reducing the pattern error by 83% and 81%,
respectively. The average |EPE| and pattern error of the pro-
posed algorithm are 12% and 10% higher than Calibre
pxOPC. According to the above analysis, both of the
Calibre pxOPC and proposed algorithm can effectively
reduce the |EPE]| in contrast to the initial mask pattern. In
addition, the image fidelity of Calibre pxOPC is better
than that of the proposed algorithm. The computational
efficiency of different methods is compared in the following.
All of the computations are carried out on an Intel(R)
Xeon(R) x5650 CPU, 2.67 GHz, 32.00 GB of RAM. The
nonparametric regression process of the proposed algorithm
is implemented in C language, and the postprocessing is
implemented by the Calibre software. The test layouts are
saved as OASIS files. In order to fairly compare the runtimes,
we removed the hierarchies in the OASIS files, and ran both
of the Calibre software and C codes using one CPU core. The
runtimes of Calibre pxOPC and the proposed algorithm are
summarized in the fifth row of Table 2. For the simulations of
90-nm metal layer, the Calibre pxOPC and the proposed
algorithm took 1910 and 991 s, respectively. In particular,
the nonparametric regression process based on the C lan-
guage took 219 s. In the postprocessing method, Steps 1
and 2 together took 20 s, and Step 3 took 752 s. For the
simulations of 45-nm metal layer, the Calibre pxOPC and
the proposed algorithm took 881 and 341 s, respectively.
The nonparametric regression process based on C language
took 99 s. In the postprocessing method, Steps 1 and 2
together took 7 s, and Step 3 took 235 s. Compared to
the Calibre pxOPC, the proposed algorithm reduced the run-
time by 48% and 61% for the 90- and 45-nm metal layers,
respectively. It is also noted that the times to build up the
OPC training datasets are 10.0 and 11.6 h for the 90- and
45-nm metal layers, respectively. However, whenever the
training datasets are built up, they can be repeatedly applied
for different layers with similar geometric characteristics.
In the following, we adopt the trapezoid count in the frac-
tured masks as the metric to evaluate the mask complexity of
different methods, where fewer trapezoids mean lower mask
complexity.*®*® We used the mask data preparation function

1200 ,
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Fig. 10 Histograms of the |EPE| values corresponding to the target pattern and OPC patterns obtained
by the Calibre pxOPC and the proposed algorithm for the (a) 90-nm metal layer and (b) 45-nm metal

layer, respectively.
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Table 1 The distributions of the |EPE| values for different methods. |EPE]| is the absolute EPE value, and #|EPE| means the count of detected

sites.

Initial Calibre pxOPC Proposed
#|EPE| within 90 nm 45 nm 90 nm 45 nm 90 nm 45 nm
(0, 5 nm) 8 249 1574 837 1300 784
(5, 10 nm) 29 415 411 1024 629 919
(10, 15 nm) 101 321 15 135 64 234
(15, 20 nm) 130 299 0 4 6 50
(20, 25 nm) 378 328 0 0 1 10
(25, 30 nm) 738 230 0 0 0 2
(30, 35 nm) 602 154 0 0 0 1
>35 nm 14 4 0 0 0 0

Table 2 Performance comparison between Calibre pxOPC and the proposed algorithm.
Initial Calibre pxOPC Proposed

Criterion 90 nm 45 nm 90 nm 45 nm 90 nm 45 nm
Average |EPE| (nm) 26.5 15.9 4.3 6.0 5.0 6.7
Pattern error (um?) 388.7 28.0 26.2 4.9 31.7 5.4
Runtime (s) — — 1910 881 991 341
Trapezoid count 3822 1361 89830 15769 87511 10974

of the Calibre software to fracture the initial mask pattern and
the optimized OPC patterns obtained by the Calibre pxOPC
and proposed algorithm. The parameter “Small Value” in
Calibre was set as 20 nm to define the threshold of external
slivers. The resulting trapezoid counts are presented in the
sixth row of Table 2. In contrast to Calibre pxOPC, the pro-
posed algorithm may reduce the trapezoid counts by 3% and
30% for the 90- and 45-nm metal layers, respectively. This
means the proposed algorithm may further reduce the mask
complexity compared to Calibre pxOPC. From the simula-
tion results and analysis above, we conclude that the pro-
posed algorithm can effectively speed up the current
professional Calibre pxOPC software and reduce the result-
ing mask complexity. However, the gain of computational
efficiency and mask simplicity is at the cost of acceptable
image fidelity degradation. In the future work, we will try
to adjust the parameters in our proposed method and the
Calibre pxOPC flow to further reduce the image accuracy
gap between these two methods, and try to compare the per-
formance of the two methods based on a fixed image error. In
the future, we will also investigate the application of the pro-
posed algorithm in more advanced technology nodes, and
study the key factors influencing the capacity and scalability
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of the algorithm, such as the density, diversity, and dimen-
sion of the layout, as well as the polygon counts included in
the mask.

6 Conclusion

This paper developed a fast OPC algorithm based on a non-
parametric kernel regression method. First, the input training
data were sampled from the training layout, and the output
training data were collected from Calibre pxOPC. The OPC
training datasets were established for convex corners, con-
cave corners, and edges, respectively. Subsequently, the
test layout was divided into different regions spanned by
a set of observation points. Then, the nonparametric kernel
regression was independently performed for each of the
regions. The final OPC for the entire test layout was gener-
ated by stitching up all pieces of regressed OPC patterns. In
order to further improve the image fidelity and to reduce the
mask complexity, a postprocessing step was applied to
modify the raw regressed OPC pattern. In this paper, both
the 90- and 45-nm metal layers were used to test and inves-
tigate the proposed algorithm. Simulations illustrated that
compared to Calibre pxOPC software, the proposed method
may achieve approximately a twofold to threefold speed up
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and a lower mask complexity at the cost of acceptable image
fidelity degradation. However, our current work focuses on
improving the image fidelity at nominal conditions without
considering the process variations of lithography systems. In

fu

ture work, we would generalize the proposed algorithm to

extend the process window under defocus and dose variation.
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