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Abstract. Line edge roughness (LER) measurement is one of the metrology challenges for
three-dimensional device structures, and LER reference metrology is important for reliable
LER measurements. For the purpose of LER reference metrology, we developed an LER mea-
surement technique that can analyze LER distribution along the height of a line pattern, with
high resolution and repeatability. A high-resolution atomic force microscopy (AFM) image of a
vertical sidewall of a line pattern was obtained using a metrological tilting-AFM, which offers
SI-traceable dimensional measurements. The tilting-tip was controlled with an inclined servo
axis, and it scans the vertical sidewall along a line pattern with a high sampling density to enable
an analysis of the LER height distribution at the sidewall. A horizontal cross-section of the side-
wall shows sidewall roughness with sub-nm resolution. Power spectral density (PSD) analysis of
the sidewall profile showed that the PSD noise in the high-frequency region was several orders of
magnitude lower than the noise of typical scanning electron microscopy methods. AFM mea-
surements were sequentially repeated three times to evaluate the repeatability of the LER mea-
surement; results indicated a high repeatability of 0.07 nm evaluated as a standard deviation of
LER at each height. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JMM.19.1.014003]
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1 Introduction

The line edge roughness (LER) of a line pattern is an important dimensional parameter and
should be measured precisely for the fabrication of semiconductor devices. Critical-dimension
scanning electron microscopes (CD-SEM) are commonly used as LER metrology tools in the
fabrication process because of their high throughput and reasonably good resolution. However,
the use of CD-SEMs to provide absolute LER measurements at the sub-nm scale is unreliable
because of the difficulty of line-edge determination1 and the random noise in the high-frequency
region.2–4 As the dimensions of semiconductor devices continue to decrease, the horizontal
resolution of the SEM becomes insufficient. In addition, CD-SEM provides a top-view (two-
dimensional) metrology and cannot be used to measure a three-dimensional (3-D) profile of the
vertical sidewall of a line pattern. Moreover, the sample damage or contamination caused by
electron-beam exposure cannot be ignored for LER measurements at the single-nm scale. LER
measurements done only by CD-SEM are no longer reliable when considering recent lithogra-
phy advances; the determination of a new LER metrology method thus poses a new metrology
challenge for 3-D device structures.5

Two LER reference metrology techniques that offer a high-resolution sidewall profile and
provide a reference standard6 to evaluate CD-SEM have been proposed, including the use of
transmission electron microscopy (TEM)7–10 and atomic force microscopy (AFM).11–13 The
TEM technique involves preparing the sample using a focused ion beam instrument so that the
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horizontally sliced image of the line patterns, i.e., projected onto the xy plane, can be measured
by TEM.7–10 This technique allows for higher resolution due to less noise when compared with
the conventional SEM technique, the simultaneous measurement of multiple line patterns in a
field-of-view, and the analysis of actual devices. However, it is a destructive metrology tech-
nique. The AFM technique involves the use of a special probe control with two-axis force sen-
sitivity, which enables the AFM tip to scan the vertical sidewall, known as CD-AFM (using a
flared tip) and tilting-AFM.11–15 This technique provides high resolution, is nondestructive, and
provides a 3-D sidewall profile. Complementary use of the TEM and AFM techniques is pref-
erable for various purposes of the LER reference metrology.

Although these AFM techniques utilize a probe tip that inhibits usage in dense line patterns
and provide lower throughput than the SEM technique, nondestructive AFM metrology tech-
niques could be used to calibrate the LER reference standards used for the evaluation of CD-
SEM’s LER measurement performance. Furthermore, CD-AFM using a flared tip has been
shown to measure the vertical sidewall of a line pattern and has been used for CD measurement,
the most basic dimensional parameter of the line pattern, in the semiconductor industry.
However, the large tip used (typically, tens of nanometers) limits the resolution when measuring
surface roughness.3,14,15 As the tilting-AFM techniques use a normal sharp tip, the sidewall
roughness can be measured with high resolution, although only one side of the line pattern can
be measured per measurement. As such, several studies have investigated sidewall roughness
measurements using the tilting-AFM technique16–20 by mostly evaluating sidewall surface
roughness expressed in standard deviation of the distance between each point and least-squared
plane of point cloud at the sidewall, while the height information is ignored. The LER distri-
bution along the height (i.e., precise height distribution of LER in the line pattern’s sidewall) is
beneficial for the evaluation of advanced devices with sidewall roughness dependent on height,21

although special data processing is necessary. Tip scanning along a line pattern, as shown in
Fig. 1(a), can more effectively measure the LER than tip scanning across a line pattern [shown
in Fig. 1(b)] owing to the less thermal drift error in the AFM that causes a relative position error
between each fast-scan profile. To scan a vertical sidewall along a line pattern, the tilting-tip can
be controlled with the servo axis inclined by θp during the scan on the vertical sidewall.
However, the movement of the tilting-tip is restricted within the inclined servo axis, as shown
in Fig. 2(a), making it difficult to scan at a fixed height. Thus, the height of data points in a fast-
scan profile varies depending on the sidewall asperity, as shown in Fig. 2(b). A high sampling
density and appropriate data processing are therefore necessary to calculate the LER height dis-
tribution. Fouchier et al. measured the sidewall profile with a pixel size of about 5.5 and 3.9 nm
in the vertical and horizontal directions, respectively, using a tilting-AFM (sample-tilting type)
and interpolated the data points using a grid in the xz plane to enable the calculation of LER
distribution along the height.13 To measure the LER in high resolution, i.e., to evaluate the LER
up to the high-frequency region, a high sampling density is necessary in both fast and slow scans.
In addition, the internal scale of the AFM instrument and the repeatability of the LER measure-
ment should be evaluated for LER reference metrology.

We developed a metrological tilting-AFM (tilting-mAFM) to measure the dimensional
parameters of nanoscale 3-D structures.22,23 The probe-tip displacement is precisely measured

Fig. 1 Fast scan (a) along and (b) across line pattern using tilting-TiP.
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in the x, y, and z axes using high-resolution laser interferometers. As the frequency of the laser
source is calibrated using an iodine-stabilized He–Ne laser, the internal scale of the tilting-
mAFM is traceable to the SI unit of length. This study aims to measure the sidewall surface
of a line pattern with high sampling density (≥1 nm−2) and rearrange the AFM data to obtain
the LER height distribution. We demonstrated the LER measurement of the line pattern and
scaling analysis, such as power spectral density (PSD) and height–height correlation function
(HHCF).24,25 In addition, the resolution of the sidewall profile measurement and the repeatability
of LER measurement for reference metrology is evaluated.

2 Experimental Setup

The tilting-mAFM was used to perform LER measurement of a nanoscale line pattern. An
OMCL-AC200TS (Olympus Corp.) cantilever probe was used. The tip-tilting-angle (θt) and
inclining angle of the servo axis (θp) were 14 deg and 30 deg, respectively, as described in
Sec. 3.2 in Ref. 22. The θp was empirically determined considering the servo-control stability
and data density on the sidewall, as described in the Appendix. The AFM scanner was closed-
loop controlled using the signals from the laser interferometers for the x and y axes and from the
AFM signal for the z axis. In the inclined servo-axis control, tip position in the y axis was con-
trolled using the signal proportional to the z axis displacement as well as the y-axis displacement.
The inclined servo-axis control indirectly controlled the y-axis scanner based on the AFM signal,
enabling the inclined servo-axis control.

The stability of scanning the sidewall along the line pattern was evaluated for repeatability in
advance following the procedure described in Sec. 4.2 in Ref. 22, i.e., the stability was evaluated
separately from the surface roughness by repeatedly measuring the sidewall profiles at the same

Fig. 2 (a) Tilting-tip inclined by θt and controlled with the servo axis inclined by θp. (b) Heights of
data points in a fast-scan profile vary depending on the sidewall asperity.
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location and evaluating the standard deviation of the coordinates of the data points. An Si line
pattern ∼200 nm in both height and width, fabricated by NTT Advanced Technology Corp.
using electron-beam lithography, was used for evaluation. Ten fast-scan profiles were measured
at the same location on the sidewall surface along the line pattern for over 2000 nm with 1000
data points per fast-scan profile. A point of first index was selected from the first fast-scan pro-
file; the standard deviation of the x, y, and z coordinates of 10 points with same index was then
calculated. The standard deviations were calculated for the consecutive 999 indices in the same
way. Thus, the repeatability was evaluated as the average of the 1000 standard deviations. The
same procedure was executed for the 1000 points at the horizontal surface of the line pattern, too.
The evaluated repeatability of the scanned profiles in the x, y, and z coordinates indicates that the
tip scanning along the line pattern has sub-nm repeatability, as shown in Table 1.

One side of the line pattern was then measured by the tilting-mAFM with the following
parameters: 500 lines, each with 2000 points for 2000 nm along the x axis or longitudinal direc-
tion of the line pattern (fast axis) and 180 nm along the y axis or linewidth direction (slow axis).
This satisfies the high sampling density (≥1 nm−2) in the sidewall of the line pattern. A single
measurement spanned ∼48 min. LER results are analyzed in Sec. 3, where the top and bottom
surfaces are defined, and the AFM data (point clouds) are partitioned in the height direction. The
point clouds of each partition represent the horizontal cross-section of the line pattern at each
height.

3 Results and Discussion

3.1 Sidewall Measurement Results and Analysis of LER Height Distribution

As shown in Fig. 3, the AFM image expressed as point clouds showed vertical streaks on the
sidewall, likely formed owing to the fabrication process of the Si line pattern. The point clouds of
the AFM data were analyzed to calculate the LER height distribution. Rough LER (or sidewall
roughness) can be estimated from the projection of one fast-scan profile onto the xy plane.
However, the height (z coordinate) of the fast-scan profile varies depending on the sidewall
asperity, as was shown in Fig. 2(b). The height variation of one fast-scan profile extracted from
the data shown in Fig. 3 is shown in Fig. 4(a). Here, the z coordinate clearly varied following the
surface asperity. Note that the increasing trend came from the imperfection of sample alignment,
that is, the sidewall of the line pattern was not completely parallel to the x axis of the tip scan-
ning. Thus, the LER height distribution must be organized according to the AFM data from the z
coordinate to show a horizontal cross-section against an arbitrary height. A height-constant side-
wall profile was formed by points picked up from multiple fast-scan profiles and is shown pro-
jected onto the xz plane in Fig. 4(b). Here, the red strip indicates the height-constant sidewall
profile, which is shown projected onto the xy plane in Fig. 4(c). No frequency filtering was
applied. The sidewall profile consisted of 4449 points. The strip z width was determined such
that each strip contained more than 2000 data points, i.e., the amount of sampling points of each
fast-scan profile. The jagged profile shown in Fig. 4(c) indicates the sidewall roughness, not the
noise of tip scanning, apparent from the clusters of points at each location along the x axis picked
up from multiple fast-scan profiles. Here, the resolution of sidewall scanning in the y direction
was better than 0.5 nm, which roughly corresponds to the thickness of the profile as the mea-
surement noise.

Table 1 Repeatability of the fast scan in the x , y , and z
coordinates on the sidewall and horizontal surface.

x (nm) y (nm) z (nm)

Sidewall surface 0.17 0.19 0.23

Horizontal surface 0.18 0.14 0.09
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The AFM data were analyzed to calculate the LER by first defining the height of the line
pattern using plane-fitting of the point clouds at the bottom and top surfaces. The point clouds at
the sidewall were then divided into 100 equal-width strips, i.e., the height-constant sidewall
profiles at each height were formed using the method described above (Fig. 5).

Fig. 3 AFM data of the Si line pattern measured from one side. Scale of the x axis was com-
pressed for visibility of sidewall roughness.

Fig. 4 (a) Projection onto the xz plane of one fast-scan profile extracted from the AFM data to
observe the height variation. The height of the fast-scan profile measured on sidewall varies fol-
lowing the sidewall asperity. (b) Projection onto the xz plane of height-constant sidewall profile
(red strip) formed by points picked up from multiple fast-scan profiles (black lines). (c) The height-
constant sidewall profile [red strip in Fig. 4(b)] projected onto xy plane.
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The LER was calculated as three times a standard deviation of the distance of each point from
the fitted line of the points. The LER was calculated from each divided point cloud of Fig. 5.
Figure 6 shows the resulting LER distribution along the height. The LER of the line pattern at the
half height was 4.65 nm. Many points around the top and bottom flat surfaces fall into one strip.
Therefore, the LERs around the top and bottom have large errors and are unreliable.

3.2 Scaling Analysis of LER

PSD and/or HHCF are often used for scaling analysis of LER,24,25 and the roughness parameters,
standard deviation (σ), roughness exponent (α), and correlation length (ξ), which characterizes
the roughness profile better than solely using σ, are obtained. However, as the resolution of LER
measurement using SEM is degraded by instrumental noise, the PSD in the high-frequency
region is biased (forming a flat noise floor) and causes error in the LER. The flat noise floor
was corrected, and the result shows good reproducibility in the previous studies,2–4 although the
precision of the measurement of roughness parameters has not yet been investigated sufficiently.
We confirm the noise level of the PSD and HHCF toward reference metrology of roughness
parameters and preliminarily calculate the roughness parameters from HHCF.

Fig. 5 Point clouds on the sidewall divided into 100 strips with equal width shown with color-
coding.

Fig. 6 LER distribution along height.
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The point clouds of Fig. 4(c) were interpolated and resampled with a 1-nm interval, corre-
sponding to 2000 points, to analyze the PSD and HHCF. In the PSD calculation, we use the
discrete Fourier transform, FðkÞ, defined as

EQ-TARGET;temp:intralink-;e001;116;699FðkjÞ ¼
1

N

XN−1

n¼0

xne−2πinj∕N; (1)

where kj ¼ j∕N represents the spatial frequency and xn (n ¼ 0;1; 2; : : : ; N − 1, N is the total
number of the points and an even number) are the resampled points with a constant interval d.
The PSD, PðkjÞ, is calculated for j ¼ 1;2; : : : ; N∕2 because FðkjÞ is symmetrical about
j ¼ N∕2

EQ-TARGET;temp:intralink-;e002;116;600PðkjÞ ¼ 2djFðkjÞj2; (2)

where the factor of 2 is multiplied to keep the total power. The PSD is shown in Fig. 7(a). The
HHCF, Gðr ¼ mdÞ (m ¼ 1;2; : : : ; N − 1), is calculated as24

EQ-TARGET;temp:intralink-;e003;116;543Gðr ¼ mdÞ ¼
�

1

N −m

XN−m

n¼1

ðxnþm − xnÞ2
�1∕2

; (3)

and is shown in Fig. 7(b). Although averaging and filtering processes were not applied to the
sidewall profile [Fig. 4(c)] used for the PSD calculation, the flat noise floor of the PSD detected
in the high-frequency region was several orders of magnitude lower than that of a typical
SEM.2–4 The variation of the PðkÞ increased at frequencies higher than 0.1 nm−1. There was
a peak at 0.259 nm−1 that corresponds to a wavelength of 3.86 nm. The source of these variations
and peak is unclear and may be due in part to the instruments used; further investigation is

Fig. 7 (a) PSD and (b) HHCF of the sidewall profile at the half height.
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needed to understand this effect on LER measurement error. Roughness parameters (σ, α, and ξ)
obtained from HHCF were 1.57 nm, 0.76, and 49.5 nm, respectively.

3.3 Repeatability of LER Measurements

Three AFM sidewall data sets were sequentially measured to evaluate the repeatability of the
LER measurement; these profiles, shown in Fig. 8(a), demonstrate the high repeatability of the
sidewall measurements. The LER height distribution was also calculated from the three AFM
data sets and is shown in Fig. 8(b). The standard deviation of the LER at each height (index
ranging from 15 to 85, leaving out the part around the bottom and top of the line pattern) of the
three results was then calculated. The average and standard deviation of the calculated standard
deviations at each height index were 0.07 and 0.04 nm, respectively, indicating high repeatability
of the proposed LER measurement methodology.

4 Conclusion

An LER measurement technique was developed based on the tilting-mAFM technique for LER
reference metrology. The sidewall profile of a line pattern was measured using tilting-tip scan-
ning along a line pattern with high sampling density (≥1 nm−2). The AFM data were then ana-
lyzed to divide the point cloud into 100 strips in the height direction to analyze the LER
distribution along the height. The obtained line edge profile at each height showed that the res-
olution of sidewall scanning in the y direction was better than 0.5 nm. The calculation of the PSD
and HHCF indicated that the proposed tilting-mAFM method had much lower noise than a typ-
ical SEM, although further investigation into noise in the high-frequency region in the PSD is
necessary. Finally, the repeatability of the LER measurements was investigated by repeating the
experiment three times. These trials indicated that the repeatability of the LER measurements,
evaluated as an average of standard deviations at each height, was 0.07 nm. The proposed mea-
surement technique is capable of nondestructive 3-D sidewall measurement with traceability to
the SI unit of length and high resolution and repeatability and thus is promising for future usage
in LER reference metrology. Future work will focus on investigating the calibration method of
SEM’s LER measurements using the tilting-mAFM technique as LER reference metrology.

Fig. 8 (a) Three sequentially measured AFM sidewall profiles at the half height projected onto the
xy plane (with offsets for clarity). (b) LER distribution along the height of the three measured AFM
data sets.
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5 Appendix: Dependency of Servo-Control Stability and the Measured
Line Edge Profile on θp

A higher inclining angle of the servo axis, θp, enables a higher data density on the sidewall
22 and

is preferable. On the other hand, an angle of θp that exceeds a certain threshold makes the inclin-
ing-servo-control unstable and causes high noise in the line edge profile. We investigated the θp-
dependency of the line edge profile by repeatedly measuring the same location with different θp.
Figure 9(a) shows line edge profiles at the half height measured with different θp. Figure 9(b)
shows θp-dependency of repeatability of the fast scan in the x, y, and z coordinates on the side-
wall investigated in the same way as Table 1. Figure 9(c) shows HHCFs calculated from line
edge profiles in Fig. 9(a).

In Fig. 9(a), the line edge profiles of 45 deg and 60 deg are noisier than those of 15 deg and
30 deg. This is consistent with the repeatabilities in the y axis of 45 deg and 60 deg being much
higher than those of 15 deg and 30 deg as shown in Fig. 9(b). Note that, except for the noise level,
these four profiles have almost the same shape that indicates the θp-dependency of the profile
shape is small. Figure 9(c) shows that HHCFs of 15 deg and 30 deg have low noise and similar
shape, resulting in almost the same roughness parameters. Therefore, we conclude that an angle
approximately between 15 deg and 30 deg is suitable for θp in the LER measurement.
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