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Abstract. The use of ground truth (GT) data in the learning and/or assessment of classification
algorithms is essential. Using a biased or simplified GT attached to a remote sensing image to
partition does not allow a rigorous explanation of the physical phenomena reflected by such
images. Unfortunately, this scientific problem is not always treated carefully and is generally
neglected in the relevant literature. Furthermore, the impacts of obtained classification results for
decision-making are negative. This is inconsistent when considering investments in both the
development of sophisticated sensors and the design of objective classification algorithms.
Any GT must be validated according to a rigorous protocol before utilization, which is unfortu-
nately not always the case. The evidence of this problem is provided, using two popular hyper-
spectral images (Indian Pine and Pavia University) that misleadingly are frequently used without
care by the remote sensing community since the associated GTs are not accurate. The hetero-
geneity of the spectral signatures of some GT classes was proven using a semisupervised and an
unsupervised classification method. Through this critical analysis, we propose a general frame-
work for a minimum objective assessment and validation of the GT accuracy, before exploiting
them in a classification method. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.13.034522]
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1 Introduction

During the last decade, hyperspectral imagery has become an appropriate Earth observation
means to help decision-making and is presently considered an excellent information source
to ease analysis and interpretation of imaged objects in a variety of applications, beyond the
field of remote sensing. With the development of hyperspectral imaging technology, hyperspec-
tral imagery allows a better characterization of physical phenomena and more accurate discrimi-
nation of observed materials than traditional three-bands in the visible range (RGB) or even
multispectral images (a few to tens of spectral bands).

Aerial hyperspectral imagery provides detailed and objective information on a scene by im-
aging narrow spectral bands over a continuous range of channels, producing the spectra of all
pixels in the scene. Hyperspectral remote sensing is used in a wide array of applications due to its
large spectral range (several hundreds of spectral bands covering the visible and infrared
domains) and its fine spatial resolution (a few tens of centimeters). With such richness of infor-
mation, the interest in hyperspectral image (HSI) data has increased during the recent years in
many application fields. Among these fields, we can mention the qualitative and quantitative
inventory of vegetation species and their spatial distribution,1,2 the early detection of vegetation
diseases3,4 and invasive species,5,6 the identification of marine algae,7,8 the human and animal
impacts on the environment,9,10 etc.

Despite its importance and the wide range of current and potential applications it encom-
passes, hyperspectral imagery exploitation is still a big challenge due to difficulty in analyzing
image datasets, which can be very large in both the spatial and spectral dimensions.11,12
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To highlight and exploit this wealth of information given by HSIs, classification is a central
stage in decision-making processes. It helps to summarize the image information content by
assigning a unique label to similar pixels in the image, objectively based on its spectral signature.
The classification methods can be categorized into three families, namely (1) supervised,
(2) semisupervised, and (3) unsupervised.13–15 Supervised methods require a priori knowledge
of the ground truth (GT) label information in the learning and assessment stages.16,17 In the case
of semisupervised methods, the knowledge of the number of classes (often given by the GT) and/
or some threshold values, or the number of iterations for iterative methods are required to per-
form the classification task.18,19 Finally, unsupervised methods objectively aggregate the objects
(pixels) in classes without any knowledge (neither the number of classes to discriminate nor
learning samples). They estimate the number of classes and aggregate pixels in classes, by using
one or several optimization criteria.20

Whatever the family of classification method considered, a reliable GT is always necessary
because this knowledge is essential during the stages of evaluation and validation of
classification results or algorithms; otherwise, classification methods will have no scientific
credibility.

For instance, imagine we have an aerial HSI of cultivated areas for which the reference class
information (GT) is wrongly summarized to single class content (e.g., wheat). It is very likely
that this image exhibits spectral variations due to the existence of several distinct classes, though
it is claimed as homogeneous and wrongly reduced to a single land cover area in the GT map.
These spectral variations detected by the hyperspectral imager may come from regions in which
the seeded plants did not grow uniformly for multiple reasons (plant disease, local moisture, and/
or path through the plant crop, etc.) If one wants to assess an unsupervised (no prior knowledge)
classification algorithm to this image, the chosen algorithm, without much a priori information,
will probably be able to objectively discriminate these variations and to discover several classes
that account for these variations and highlight some informational content not present in the
original GT map. On the one hand, forcing pixels to belong to a wrong class during the learning
stage (for supervised classification) or assuming a lower number of classes with respect to reality
(for semisupervised classification) can have high negative impact: the measured classification
accuracy does not significantly reflect the physical reality of the observed image since pixels
with very different spectral signatures are merged into “virtual” classes. When considering the
absolute reference of GT, a homogenous class formed of objects having the same or very close
characteristics is necessary. A GT, therefore, must take into account the physical characteristics
of objects present in the imaged scene. On the other hand, during the elaboration of GT or with
the help of end-users, how the classes are forced to merge to form virtual classes must be con-
sidered; for example, in a crop field, how pixels belonging to bare soil should be grouped with
those belonging to growing corn. The practical consequences of such knowledge-based (some-
times arbitrary) class merging are not very critical in the present context but might be disastrous
in other application areas; for example, in the medical field, one can imagine what would be the
consequences of confusing a tumor with a sane tissue after image partitioning.

Another important point is the evaluation of classification methods based on a false or sim-
plified GT. With such a GT, unsupervised classification methods are doomed to failure and
unjustifiably disqualified in contrast to supervised or semisupervised methods, though they are
likely to provide classification maps closer to the physical reality.

To illustrate the problem addressed here, an analysis of the GT data associated with two well-
known HSIs, namely “Indian Pine” (AVIRIS) and “Pavia University” (ROSIS), is conducted in
this research. Both images have been extensively used in the remote sensing literature dealing
with classification or clustering of HSI pixels. Indeed, so far, more than 200 scientific published
papers mention these datasets in their abstract or keywords. By analyzing some specific classes
defined in the GT map and field observations, when available, we demonstrate the fact that these
reference maps are ill-conditioned and should be at least reconsidered before being used for
classification purposes.

We must specify that the problem raised here does not aim to propose a method for selecting
learning samples. It is rather an objective critical analysis that underlines the use of inconsistent
GT data for the assessment of classification algorithms as well as the incoherent results given by
certain algorithms, which closely follow the biased GTs. This scientifically worrying problem is
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becoming significant and unfortunately creates a lot of confusion in the related scientific liter-
ature. It calls into question the credibility of the contribution of generation sensors and also of the
accurate and objective analysis by sophisticated algorithms of the information that these sensors
can acquire. This problem is not systematically avoided despite the existence of credible sci-
entific reasons. The present paper underlines the fact that any GT should not systematically be
considered as an absolute reference. Before any use, it must be validated according to a rigorous
protocol, which is unfortunately not always the case. It is, therefore, important to remember that
the fineness and richness of the data provided by the generation of imaging sensors, and the
development of increasingly sophisticated algorithms must contribute to more objective deci-
sion-making. This paper gives a comprehensive analysis and further details of the work pub-
lished by Chehdi and Cariou.21 The steps of the proposed analysis can be used as a basic
approach to validate a GT dataset.

The remaining of the paper is organized into two sections. Section 2 presents (i) a spectral
signature analysis of two popular HSIs based on their associated GT maps, (ii) an assessment of
the homogeneity of the GT classes by using semisupervised and unsupervised classification
methods, (iii) a description of the impacts of a biased GT, and (iv) a general framework to assess
and validate a given GT database. The last section provides a conclusion.

2 Spectral Signature Analysis of Biased Ground Truth of HSIs and
Impacts

In the remote sensing field, the GT data associated with the acquired images are sometimes
wrongly considered as “reference” data because they are incorrect or extremely simplified.
This problem is particularly frequent in airborne and spaceborne remote imaging, where GT
data are often utilized in an abusive and inappropriate manner. Before this finding is proven,
it is very important to first recall definitions and the meaning of the GT authenticity.

2.1 Ground Truth Definition

According to the Oxford English dictionary,22 there are three definitions of GT, depending on
its usage:
i. Information that has been checked or facts that have been collected at source;
ii. Information obtained by direct measurement at ground level, rather than by interpretation of

remotely obtained data (as aerial or satellite images, etc.), especially as used to verify or
calibrate remotely obtained data;

iii. Information obtained by direct observation of a real system, as opposed to a model or sim-
ulation; a set of data that is considered to be accurate and reliable and is used to calibrate a
model, algorithm, procedure, etc. In addition (specifically in image recognition technolo-
gies), information obtained by direct visual examination, especially as used to check or
calibrate an automated recognition system.

These definitions converge and bring no confusion to the interpretation of the noun “GT.”
They are also in line with the definition given by Claval23 in the sense “that it guarantees the
authenticity of the collected observations.”

2.2 Ground Truth Authenticity

Since the advent of technological remote sensing means, several authors have pointed out the
risk of abandoning the precision and authenticity of the so-called “microlevel” knowledge
(e.g., Rundstrom and Kenzer24), in favor of the “macrolevel” generalization. Nevertheless, the
fieldwork, called “intimate sensing” by Porteous,25 is still a necessary complement of knowl-
edge, even at the macroscopic scale.

Whatever the application domain or the theme that a “GT” is associated with, this latter,
therefore, must guarantee the authenticity and accuracy of observations and must be faultless
since it is a reference, a model. In a decision-making framework based on image processing and
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analysis, a GT map must be consistent with the corresponding image data since the latter are
bound to the physical characteristics of objects or real materials that are present in the imaged
scene. Moreover, each area declared as homogeneous must refer to the same content. Such GT
area must, therefore, be coherent with the corresponding area in the HSI that objectively rep-
resents the real scene, indicating that the pixels of a homogeneous region must have similar
spectral features; otherwise, the results of the objective analysis of images exploited in the deci-
sion-making process will never match those of the simplified GT. This means that any analysis
method using untrue GT data will provide biased and nonrigorously exploitable results as well
as, irrelevant conclusions.

To illustrate this, analysis results focusing on two significant examples, namely the cases of
the Indian Pine and Pavia University datasets, are presented. These are the most widely used
benchmark datasets (HSIs and associated superimposable GT maps) referred to in the remote
sensing community for classification purposes. For each dataset, we first recall the characteristics
of the image and the corresponding GT. Thereafter, the different analyses based on spectral
signatures of the pixels are performed to put in evidence the inhomogeneity of GT classes.
The anomalies of these two GTs are pointed out by calculating the spectral dispersions within
the reference classes.

Furthermore, the need to subdivide the classes of the original GTs for a better coherence with
the HSIs based on the spectral features is emphasized by using semisupervised and unsupervised
methods. Finally, the approximations made in constructing the GT maps associated with HSIs
and their negative impacts in the analysis and interpretation of their informational content are
also discussed.

2.3 Analysis of Two Biased Ground Truth

2.3.1 Indian Pine GT classes

The AVIRIS Indian Pine HSI26 has a spatial size of 145 × 145 pixels, where each pixel is char-
acterized by a set of 220 spectral values (features). The spectral range is from 400 to 2499 nm.
The ground spatial resolution is approximately 20 m∕pixel. The corresponding GT map is made
of 16 classes.

Figure 1 displays the HSI visualized under two different wavelength triplets to highlight the
variations in the regions corresponding to each original GT class, as well as, the image of class
labels of the associated GT. Figure 2 presents the nature of each supposed homogeneous class
and the corresponding number of pixels.

Spectral signature analysis of hyperspectral images. In an HSI, a pixel is charac-
terized by its spectral signature, a set of features corresponding to radiance or reflectance in
contiguous spectral bands.

Let X ¼ fx1; x2; : : : ; xNg be the set of elements (pixels) to be partitioned. Each pixel xi is
characterized by the feature vector Ai ¼ AðxiÞ ¼ ðai1; ai2; : : : ; aiBÞT, where B is the number of
features (spectral bands).

Consider a partition of X into K indexed subsets or classes fCng1≤n≤K , and li ∈ f1; : : : ; Kg
the label associated to pixel xi so that the n’th class Cn ¼ fxi∶li ¼ ng1≤i≤N and jCnj ¼ Mn. The
average spectral signature (barycenter) of class Cn is given by

EQ-TARGET;temp:intralink-;e001;116;181gn ¼
1

Mn

X
xi∈Cn

AðxiÞ: (1)

The metric used here to calculate the dispersion of a class Cn is the L1-norm distance. This
metric computes the global error without compensation (sum of absolute errors) between the
spectral signature of an object and a reference or between two spectral signatures. This norm
has been proven to be relevant for high dimensional datasets.27
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The total dispersion of class Cn is defined by

EQ-TARGET;temp:intralink-;e002;116;142Dn ¼
X
xi∈Cn

dðxi; gnÞ; (2)

where dðxi; gnÞ is the L1-norm distance between a pixel xi and the barycenter gn of class Cn is
given as

Class label Class name #GT pixels  Class label Class name #GT pixels 

C1 Alfalfa 54  C9 02staO

C2 Corn no-till 1434  C10 Soybeans no-till 968 

C3 Corn min-till 834 C11 Soybeans min-till  2468 

C4 Corn 234 C12 Soybeans clean-till 614 

C5 Grass/Pasture 497 C13 Wheat 212 

C6 Grass/trees 747 C14 Woods 1294 

C7 Grass/pasture-
mowed  

26 C15 Bldg-Grass-Tree-
Drives 

380 

C8 Hay-windrowed 489 C16 Stone-steel towers 95 

Total GT pixels: 10 336 

Fig. 2 Data from the Indian Pine GT.

Fig. 1 Original “Indian Pine” image. (a) and (b) visualization based on two compositions of three
different spectral bands (26, 16, 6) / (37, 21, 5), respectively; (c) and (d) the selected regions of
the images (a) and (b), respectively, corresponding to the GT class labels given in (e).
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EQ-TARGET;temp:intralink-;e003;116;735dðxi; gnÞ ¼
XB
k¼1

jaik − gnkj: (3)

In order to account for the population size within a class, we also calculate the average total
dispersion of class Cn:

EQ-TARGET;temp:intralink-;e004;116;670Dn ¼
Dn

Mn
: (4)

For the GT data under study, n ¼ 1;2; : : : ; 16; that is, K ¼ 16.
Table 1 shows the results of the total dispersion and the averaged total dispersion as well as

the dispersion rank of each GT class using the L1-norm distance for the Indian Pine dataset. The
four GT classes that exhibit the highest total dispersion are (in decreasing order) C11, C2, C12,
and C14. This ranking is different when considering the average dispersions. Apart from C12,
these classes contain the highest number of pixels. Due to space limitation, we subsequently have
limited the spectral signature analysis to C11 (soybeans min-till) and C2 (corn no-till) GT classes.
Figure 3 shows the selected regions of the original image corresponding to these GT classes, and
Fig. 4 shows the spectral signatures of the pixels, the average spectral signature, and their stan-
dard deviation within the C11 and C2 GT classes. The wavelengths of the first band and the last
band are 400 and 2499 nm, respectively.

The high variations of the spectral signatures inside each GT class confirm the dissimilarity
of the pixels that form these two classes. This conclusion is consistent with the disparity of these
classes observed with just three bands of the original HSI, as shown in Figs. 1 and 3 and hence,
no further criterion is required for the confirmation of this fact. The most homogeneous class for

Table 1 Total dispersion and average dispersion of “Indian Pine” spectral signatures per GT class
using the L1-norm distance.

Supposed GT classes
Dispersion in each class

and dispersion rank

Average dispersion in
each class and
dispersion rank

C1 600 623 14 11 123 14

C2 48 443 601 2 33 782 4

C3 22 594 034 6 27 091 7

C4 11 205 200 9 47 885 1

C5 19 825 704 7 39 891 3

C6 14 369 730 8 19 237 11

C7 197 015 16 7 577 16

C8 7 035 441 11 14 387 12

C9 225 766 15 11 288 13

C10 23 134 763 5 23 900 8

C11 58 301 631 1 23 623 9

C12 26 973 156 3 43 930 2

C13 1 773 877 13 8 367 15

C14 26 682 300 4 20 620 10

C15 11 169 485 10 29 393 6

C16 2 927 468 12 30 815 5
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this GT is C7, even if a few pixels are distant from the class barycenter. This fact is confirmed by
observing the weaker variations of the standard deviation around the average spectral signa-
ture (Fig. 5).

Discussion. The examples of C11 and C2 classes mentioned earlier indicate that some
regions of the HSI declared in the GT as relating to two classes of vegetation species do not
exhibit coherent and similar spectral signatures in the acquired image. The corresponding var-
iations can even be visually detected from visible bands on Fig. 3. One might ask whether such
variations really exist from the field viewpoint and are not part of some artifacts, for example,

C11 C2

Fig. 4 Indian Pine dataset: Spectral signatures (black), average spectral signature (central curve),
and �standard deviation interval (blue) of C11 and C2 GT classes.

C7

Fig. 5 Indian Pine dataset: Spectral signatures (black), average spectral signature (central curve),
and �standard deviation interval (blue) of the assumed homogeneous class C7.

Fig. 3 Indian Pine original images visualized with three spectral bands (26, 16, 6) corresponding
to the label of C11, claimed as Soybeans min-till, and C2, claimed as Corn no-till.
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caused by the sensor itself. In fact, some answers to the issue of heterogeneity of most original
GT classes reside in the supplemental material provided with the HSI, that is, the observation
notes and field pictures associated with the field work of Baumgardner et al.,26 which is barely
referred to in the HSI classification literature. This ∼70-page document including handwritten
notes taken approximately at the time of the Indian Pine flight survey, as well as the pictures
taken by the field specialists, contain rich information that has only partially been reported in the
GT map. For instance, let us consider the field numbered as 3 to 10 in the observation notes
document. This field corresponds to the bottommost leftmost field among those of C11 class (cf.
Fig. 3). The vegetative canopy reported for this field in the observation notes is soybeans, drilled
in 8-in. rows, and a plant height of 4 to 5 in., with very few weed infestations. In the same report,
the soil characteristics also mention a minimum tillage system, not freshly tilled with corn
residues on the surface. These observations, which are only partly reported in C11 GT class
(soybeans min-till), seem to indicate that the same, uniform soil and vegetation conditions are
available over the whole field. However, this is not the case, as can be seen from the picture of
this field taken during the field observations,26 shown in Fig. 6(a). This picture clearly exhibits
local variations along lineaments traversing the north part of the field (particularly, the WSW-
ENE lineament) taken from the north end of the field and in the direction of south-east. The first
line of trees and bushes at the background correspond to the east end of the field. Figure 6(b)
shows the C11 class regions overlaid on a Google Earth archive image acquired 3 months before
the hyperspectral acquisition. The two orange lines in Fig. 6(b) delineate approximately the
field-of-view of the picture in Fig. 6(a). It is observed that the local variations of gray levels
in this image are in accordance with those observed in the HSI.

As earlier mentioned, this crop field is claimed by the GT map as uniformly grown with
soybeans on a minimum tillage soil. However, the central part of the picture in Fig. 6(a) showing
brown areas (probably bare soil) partly contradicts the original GT class map. Besides, this area
is very likely to correspond to the lineaments detected in both the HSI [cf. C11 of Fig. 3 and
in Fig. 6(b)].

The variations of the spectral signatures in classes C11 and C2 (cf. Fig. 4) probably have two
origins, with one deriving from the influence of the soil composition and moisture28 and the other
from the inclusion in these classes of objects of different natures. For example, the variations
observable in field plot 3-43 (upmost of class C11), which are very important have unfortunately
not been reported in the GT map at all, though they were reported in the field observation
document.26 Moreover, a close examination of this document reveals that the lack of information
reporting is not specific to this field plot.

From this example, it is clear that the users and developers of classification algorithms must
give attention to the GT maps provided with the HSI for their absolute truthfulness.

Fig. 6 (a) Picture “field_3-10a.tif” available in Ref. 26, displaying field 3 to 10 southeastward from
its north end and (b)C11 class regions overlaid on a Google Earth archive image (March 23, 1992).
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The above analysis based on both spectral considerations and visual perception clearly shows
that the actual number of classes can only be greater than the original 16 GT classes. Therefore,
subsequently, we propose to reconsider the number of classes by taking into account the spectral
homogeneity. For this, two classification methods are used, the first one is semisupervised
(K-means algorithm14) and the second one is unsupervised [affinity propagation (AP)
algorithm15]. Note that the objective here is not to promote any particular classification method
but to prove the coherence and effectiveness of splitting individual GT classes into subclasses
representing similar objects and so, to preserve as much as possible, the physical content of the
observed image. K-means is chosen for its simplicity and the possibility to vary the number of
classes. AP is one of the most recent unsupervised classification methods.

Subdivision of original GT classes by using the K-means algorithm. As shown in
Fig. 4, the high variations of spectral signatures in each class C11 and C2 are clearly marked,
especially in the visible range (band 1: 400 nm to band 37: 715 nm). Hence, the presence of some
subclasses in most supposed GT classes is evident. Each GT class can, therefore, be subdivided
into subclasses. Using the popular K-means algorithm (semisupervised method),14,29 where the
number of classes and sometimes the number of iterations and/or the percentage of label changes
are required (a priori knowledge), we demonstrate that the subdivision into subclasses is
unavoidable since it leads to an objective aggregation of pixels representing identical materials.
Here, we do not search the exact number of subclasses; instead, for each class, the number of
subclasses has been estimated by seeking the coherence and the homogeneity of spectral sig-
natures. The visual consistency of the subclasses formed is also taken into consideration. In this
example, the number of classes retained is one that highlights both the easily visible and spatially
coherent structures in the images of Fig. 3 and the low variability of the spectral signatures within
each created subclass.

After partitioning the pixels of each GT class, the different subclasses issued from its sub-
division are analyzed by calculating within subclasses dispersion and intersubclass distances.
Due to space limitation, only the results of GT classes C11 and C2 subdivisions are given in
this study.

The partitioning results of these classes by applying the K-means algorithm using the ENVI
software (100 iterations and 5% change threshold) are presented in Figs. 7 and 8, respectively.

At this level of analysis, it is not necessary to use a sophisticated classification method to
prove our findings. For example, it is obvious that the spectral signature of the assumed bare soil
area observed in Fig. 6(a) is different from the one in the nearby vegetated areas in the same field.

Fig. 7 Partitioning result of GT class C11 into seven subclasses by the K -means algorithm.
(a) Original image of GT classC11 visualized with three bands (26, 16, 6), (b) image of subclasses,
and (c) labels of subclasses in (b) and their number of pixels.
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This implies that these two areas belong to different classes. This is clearly confirmed by the
subdivision result obtained, as shown in Fig. 7(b). Any opposite result would be unacceptable.
We recall that the important point here is to emphasize the obvious inconsistencies between the
original GT and the results of classification methods, with the help of an objective analysis of
the spectral signatures of each GT class. At this level, it is important to underline, even if it is
obvious, that if some GT classes are incorrectly labeled, supervised, and semisupervised clas-
sification algorithms fed with such erroneous GT are prone to reproduce the same errors.

For class C11, the number of subclasses retained is 7. Figure 9 details the L1-norm distances
between class C11 barycenter and its subclasses barycenters as well as between pairwise sub-
classes. In this example, the total dispersion of class C11 is very high (58 301 631) as compared
to the average dispersions of its subclasses (34 607). These subclasses highlight the undeniable
existence of heterogeneous objects in the original C11 class. This is also confirmed by the non-
negligible gap between the average spectral signatures of each subclass issued from the sub-
division compared with the original class before subdivision (see Figs. 7 and 10).

In the case of GT class C2, the number of retained subclasses is 3. Figure 11 shows the
average spectral signature of each subclass. The total L1-norm distances between SC2;1 and
SC2;3 subclasses barycenters is the highest, as seen in Fig. 12. Again, the value of the total
dispersion in class C2 is higher (48 443 601) as compared to the average dispersions of its
subclasses (30 998).

To quantify the homogeneity of the subclasses obtained after partitioning classes C11 and C2,
the average dispersion within each subclass is also reported, respectively, in Figs. 9 and 12.
These average dispersions are in all cases lower than the corresponding intersubclass distances,
which shows the well-foundedness of partitioning each of these classes.

Fig. 8 Partitioning result of GT class C2 into three subclasses by the K -means algorithm.
(a) Original image of GT class C2 visualized with three bands (26, 16, 6), (b) image of subclasses,
and (c) labels of subclasses in (b) and their number of pixels.

SC11,1 SC11,2 SC11,3 SC11,4 SC11,5 SC11,6 SC11,7

C11 78 569 34 468 29 840 6 817 9 302 25 209 58 045

SC11,1 44 117 61 713 72 115 87 850 103 770 136 590 

SC11,2 31 767 28 012 43 748 59 677 92 507 

SC11,3 29 962 30 780 45 880 78 710 

SC11,4 15 743 31 670 64 507 

SC11,5 15 933 48 774 

SC11,6 32 848 

Average within subclass dispersions 14596 13168 16344 8443 8625 7529 13454 

Fig. 9 L1-norm distances between GT classC11 barycenter and subclasses barycenters, pairwise
distances between subclasses barycenters, and average within subclass dispersions.
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If the correct classification rate from the above subdivision results is calculated, taking into
account as reference the biased GT classes, with evidence, it will be low and unsatisfactory. On
the contrary, if one considers the coherence of the spectral signatures of each formed subclass
with respect to data that would result from a correct GT, this rate should inevitably be good and
unbiased. The number of likely subclasses after subdivision of each original GT class, independ-
ently of the others, is given in Table 2. The partition of each original GT into subclasses
reflecting the actual presence of physically distinct objects is consistent with the precise
content of the HSI. This result provides more precise information to the end-user as regards
the observed reality of the environment and allows a better analysis and interpretation of
data.

Subdivision of original GT classes using an unsupervised algorithm. To assess
the homogeneity of GT classes, we also applied an unsupervised method, which automatically
estimates the number of classes partitions pixels without any prior knowledge. This method is
named AP.15 The principle of this method and its main stages are summarized in Sec. 4.

The classification of GT pixels for C11 and C2 by the AP method is presented, respectively, in
Figs. 13 and 14. For these results, each original GT class is partitioned independently of the
others. However, some subclasses can be common to several GT classes. To avoid this, the
AP method was applied to all the pixels of the hyperspectral original image corresponding only
to the set of GT classes. By setting the value of the preference parameter p to the minimum of the
pairwise similarity matrix [p ¼ minðSÞ], and the damping parameter λ to 0.9, the estimated num-
ber of classes is 17, hence greater than the one provided by the GT. Figure 15 shows the par-
titioning result. We note, on the one hand, that the 17 classes obtained do not correspond exactly
to the 16 original classes of the GT and, on the other hand, that each GT class is subdivided into

Fig. 10 Average spectral signature of the GT class C11 (red) and average spectral signatures of
each subclass (SC11;i ) issued from the subdivision (blue).
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several subclasses (cf. Table 3), which are composed of pixels belonging to several original GT
classes, as detailed in Table 4. It is therefore difficult to challenge the results after observing the
spectral signatures of the pixels, as illustrated in Fig. 16. This proves that all the pixels of each
original GT class do not physically represent the same objects. For example, bare soil can no
longer be confused with vegetated areas because they do not have the same spectral signatures.
For these objective reasons, the dissimilar spectral signatures of pixels belonging to an original

SC2,1 SC2,2

SC2,3 

Fig. 11 Average spectral signature of the GT class C2 (red) and average spectral signatures of
each subclass (SC2;i ) issued from the subdivision (blue).

SC2,1 SC2,2 SC2,3

C2 46 021 3 101 43 872 

SC2,1 49 076 89 891 

SC2,2 40 824 

Average within subclass dispersion 20291 14604 14793 

Fig. 12 L1-norm distances between GT class C2 barycenter and subclasses barycenters, pair-
wise distances between subclasses barycenters, and average within subclass dispersions.

Table 2 Number of likely subclasses after subdivision of supposed GT classes (Indian Pine) by
the K -means algorithm.

Supposed GT classes C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16

Number of likely subclasses 2 3 4 3 4 4 2 3 2 4 7 3 2 3 5 2
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Fig. 14 Partitioning result of C2 GT class into subclasses by AP algorithm. (a) Original image of
GT class visualized with three bands (26, 16, 6) and (b) image of subclasses [p ¼ minðSÞ: six
subclasses estimated].

Fig. 15 Partitioning result of GT classes into 17 classes by AP algorithm. (a) The selected regions
of the images [visualized with three bands (26, 16, 6)] corresponding to labels of GT classes (b),
and (c) image of classes of (a) [p ¼ minðSÞ, 17 classes estimated].

Table 3 Number of estimated subclasses by AP after global subdivision of all GT classes (Indian
Pine).

Supposed GT classes C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16

Estimated number of subclasses 3 12 10 10 12 8 3 4 2 11 12 12 2 5 12 5

Fig. 13 Partitioning result of C11 GT class into subclasses by AP algorithm. (a) Original image of
GT class visualized with three bands (26, 16, 6) and (b) image of subclasses [p ¼ minðSÞ: eight
subclasses estimated].
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GT class are divided into subclasses, whereas similar spectral signatures of pixels belonging to
different original GTs are merged in identical subclasses.

In conclusion, the analysis of the Indian Pine dataset shows many inconsistencies of the
associated GT map, with identical class labels given to very distant spectral signatures. This
can greatly reduce the quality of the classification results (for supervised classification using
learning samples) and their assessment (for semisupervised and unsupervised methods).

2.3.2 Pavia University GT classes

The ROSIS Pavia University HSI (610 × 340 pixels) is characterized by 103 spectral bands
located in the visible and near-infrared range ([430 to 860] nm).30 The spatial resolution
is 1.3 m∕pixel.

Figure 17 displays this image as well as the nine labels (classes) GT map. Figure 18 presents
the nature and the number of pixels of the GT classes.

Fig. 16 Dissimilar spectral signatures of two pixels of the original GT class C11 (blue and black)
separated by AP into two classes (5 and 9) and similar spectral signatures of pixels belonging to
two originals GTs classes C11 and C3 merged by AP in the same subclass 9.

Fig. 17 Original “Pavia University” image: (a) and (b) visualization based on two compositions of
three different spectral bands (46, 27, 10) and (94, 62, 37) respectively; (c) image of the GT
classes labels.
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Class label Class name #GT pixels 

C1 Asphalt 6 852 

C2 Meadows 18 686 

C3 Gravel 2 207 

C4 Trees 3 436 

C5 (Painted) metal sheets 1 378 

C6 Bare soil 5 104 

C7 Bitumen 1 356 

C8 Self-blocking bricks 3 878 

C9 Shadow 1 026 

Total GT pixels 43923 

Fig. 18 Data from the Pavia University GT.

Table 5 Total dispersion and average dispersion of “Pavia University” spectral signatures per GT
class using the L1-norm distance.

Classes Total dispersion and ranking
Average dispersion

and ranking

C1 145 390 780 3 21 219 5

C2 508 339 270 1 27 204 4

C3 41 665 360 7 18 879 6

C4 94 962 990 5 27 638 3

C5 98 346 393 4 71 369 1

C6 194 096 180 2 38 028 2

C7 11 634 247 8 8 580 9

C8 55 043 145 6 14 194 7

C9 9 356 833 9 9 120 8

C1 C2 C6

Fig. 19 Original images corresponding to each label for GT classes C1, C2, and C6 visualized
using three spectral bands (46, 27, 10).
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Spectral signature analysis. Similar to the Indian Pine case, Table 5 shows the values of
total dispersions and average dispersions around the barycenters of each original GT class using
L1-norm distance. The classes presenting the highest total dispersion values in decreasing order
are C2, C6, and C1, whereas the ranking is different if one considers the average dispersions.
These three classes are the ones that contain the highest numbers of pixel samples. Figure 19

C1 C2 C6

Fig. 20 Spectral signatures (black), average spectral signature (central curve), and
�standard deviation interval (color) for classes C1, C2, and C6.

C7 C9

Fig. 21 Spectral signatures (black), average spectral signature (central curve), and
�standard deviation interval (color) for classes C7 and C9.

Fig. 22 Partitioning result of class C2 into four subclasses by the K -means algorithm. (a) Original
image of classC2 visualized with three bands (46, 27, 10), (b) image of subclasses, and (c) number
of pixels per subclass.
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displays the areas of the original image corresponding to these classes, and Fig. 20 shows
the spectral signatures, the average, and the standard deviation of these heterogeneous classes.
The wavelengths of the first band and the last band are 430 and 860 nm, respectively. The high
variations of these spectral signatures confirm the disparity within these classes. Figure 21 show-
ing the variations of the spectral signatures of GT classes C7 and C9 also confirm the existence of
dissimilar pixels, despite these two classes exhibit the lowest dispersions.

Subdivision of original GT classes using the K-means algorithm. The analysis of
spectral signatures for GT classes C1, C2, and C6 of Fig. 20 along with the observed image of
Fig. 19 confirms the obvious presence of several subclasses in each of them. Similarly, as earlier,

SC2,1 SC2,2 SC2,3 SC2,4

C2 20 585 14 594 22 585 61 565 

SC2,1 26 113 36 794 72 366 

SC2,2 36 987 47 099 

SC2,3 83 325 

Average within subclass 
dispersion 

13083 13240 13377 15707 

Fig. 23 L1-norm distances between GT class C2 barycenter and subclasses barycenters, pair-
wise distances between subclasses barycenters and average within subclass dispersions.

CS2,1 SC 2,2

CS2,3 SC 2,4

Fig. 24 Average spectral signature of the GT class C2 (red) and average spectral signatures of
each subclass (SC2;i ) issued from the subdivision (blue).
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the subdivision of class C2 was performed to illustrate this fact. The partitioning results by apply-
ing the K-means algorithm (100 iterations and 5% change threshold) are provided in Fig. 22.
As mentioned above, the number of subclasses was estimated by seeking the coherence and
the homogeneity of their spectral signatures. In this case, the number of subclasses retained is
4 for C2. Figure 23 gives the total L1-norm distances between class C2 barycenter and the
barycenters of its subclasses C2;i (fSC2;ig, 1 ≤ i ≤ 4) issued from its subdivision as well as
between subclasses barycenters. The average dispersion of each subclass is also reported in
this table. Again, these average dispersions are in all cases lower than the corresponding inter-
subclass distances. Figure 24 shows the gap between the average signature of GT class C2 and
those of the subclasses C2;i issued from its subdivision, highlighting the important amount of
dispersion between subclasses. The inconsistency of the average spectral signatures of the differ-
ent subclasses formed after subdivision proves the invalidity of the C2 GT class.

Table 6 shows the number of likely subclasses after subdivision of each original GT class.
Each partition was obtained by maximizing the coherence of spectral signatures within sub-
classes. This provided a total number of 40 subclasses.

Subdivision of original C2 GT class using the AP algorithm. By applying the AP
algorithm in the same conditions as earlier mentioned to the C2 GT class, the number of found
subclasses is 65, indicating its strong heterogeneity (see Fig. 25). Recall that with the K-means
algorithm, the number of classes was forced to 4. One can assume that these correspond to main
classes and that the 65 subclasses of AP correspond to their subdivisions (cf. Fig. 25). As such, it
is difficult to validate this assumption objectively from the original GT; this requires more pre-
cise additional information. Applying the AP algorithm to all GT pixels gives a partition with
71 subclasses (cf. Fig. 26).

This result perfectly illustrates the problem of evaluating an unsupervised partitioning
method, as discussed earlier. Here, the number of classes is much higher than the number

Table 6 Number of classes after subdivision of each GT class by the K -means algorithm (Pavia
University).

Classes C1 C2 C3 C4 C5 C6 C7 C8 C9

Number of likely subclasses 8 4 4 6 4 5 3 4 2

Fig. 25 Partitioning of class C2 into subclasses. (a) Original image of class C2 visualized with
three bands (46, 27, 10) and (b) image of 65 subclasses obtained by AP [p ¼ minðSÞ].
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of GT classes. The evaluation of the method as regards the GT data will certainly be negative,
though the pixels of each formed subclass have objectively similar spectral signatures. It is
difficult under such conditions to disqualify a method using nonscientifically based criteria.

In conclusion, these results confirm the heterogeneity of some GT classes for this dataset and
the existence of actual subclasses that are not accounted for in the GT data.

2.3.3 Impacts of biased ground truth in classification

The various examples of results obtained with the spectral signature analysis of the Indian Pine
and Pavia University HSIs show globally that the GT classes are not perfectly homogeneous
(high variation of spectral signatures) and do not correctly represent the diversity and variability
of the land cover.

Unfortunately, these two GTs have been widely used to assess the performance of classi-
fication methods.31–36 As an indication, as of the end of 2018, we identified almost 300 scientific
published papers using one or the other of these two GTs and more than 40 using both.

In the case of supervised classification methods, which exploit one or both of these GTs, we
can cite the works based on the support vector machine (SVM) algorithm and its variants after
optimization,37–39 on the adaptive artificial immune network,40 and on the adaptive simultaneous
orthogonal matching pursuit.41 Other approaches belonging to this category make use of clas-
sifiers like SVM and multilayer perceptron.42–49 Whatever the method or approach within this
category, the experimental results and the comparisons made by using these two GTs are hardly
exploitable since specific regions considered as homogeneous in the associated GT are actually
not. In addition to this difficulty, another problem is the choice of the learning samples and their
number within each class, because the classification results are highly dependent on these. For
supervised methods, the learning phase must not be conducted without scientific rigor under the
pretext that they are able to reproduce what they learn. In the field of decision-making by vision,
sensors provide physical measurements in order to characterize each imaged object. At a finer
analysis level, the physical interpretation of these measurements must be respected. Therefore,
any aggregation of heterogeneous measures by the end-user must be specified and argued.

In the category of semisupervised methods,50–53 the classes are formed based on some objec-
tive optimization criterion free of learning samples. However, we can notice the requirement for
the number of classes (which can be inferred from the GT data) and some other parameters

Fig. 26 Partitioning of the nine original GT classes into subclasses. (a) Original image of GT
classes visualized with three bands (94, 62, 37) and (b) image of 71 subclasses obtained by
AP [p ¼ minðSÞ].
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(threshold values and number of iterations, etc.) can influence the results when not properly and
correctly chosen. For example, if the number of classes is less than the true one, the algorithms
will force the objects of the unlisted classes to belong to those mentioned, if there is no defined
rejection criterion. Regardless of the algorithm used, when the number of classes is underesti-
mated by the end-user, the objects that normally do not really belong to any of the classes will be
forced to belong to one of them.

In the category of unsupervised classification, the GT data are exploited exclusively during
the assessment of the methods. The impact of using a biased GT is that the evaluation results are
systematically average or even low54 and therefore are doomed to be promptly disqualified.
Consequently, for the assessment results to be reliable and usable, the GT data must be accurate.
It is therefore essential that, in a GT, all the known subclasses of the main class must be men-
tioned for perfect adequacy with the precise information provided by the hyperspectral imagery.
This point is very important because it is unjustified to downgrade an unsupervised classification
algorithm that objectively provides accurate results and detects the real presence of objects in
images.

The last key point is related to the comparison of performances between classification meth-
ods, for which GT data play an important role in the selection of the most relevant methods.
Indeed, in the case where the reference data are biased, it is difficult (if not almost impossible) to
objectively conclude that a method that reproduces similar errors as those contained in the GT is
better than another. Actually, the question is: should one preferably consider methods giving
results closer to the GT, even if this one exhibits anomalies (dissimilarity of spectral signatures
within the same GT class); or methods that objectively subdivide the classes of a GT into sub-
classes showing similar spectral signatures (low within-class variance) and physically represent
the same objects or structures? It is obvious that the second solution is scientifically more rel-
evant and consistent as regards the means used, the reality of the phenomena observed, and the
expectations of end-users.

In conclusion, the use of a biased GT in a classification process can only yield confusion
when considered as an absolute reference. Beyond remote sensing, all the application fields
requiring decision-making are concerned by this subject, the degree of confusion, and the neg-
ative impact being more or less serious depending on the application domain.

To avoid any confusion, and for a better exploitation of available remote sensing data, a GT
must be accurate: during the field campaign, it must not be limited to the plot area and the type of
land cover, but it must also include the areas, where the soil remains bare, its moisture, the
presence of a river, of a path, etc.

For the collection of a reliable GT, the first condition is rigor. Field surveys must be taken
under the same conditions following the same protocol. They must be a strict reflection of the
physical reality of the terrain studied, without simplification or extrapolation. Nonaccessible
areas with a high percentage of observable variations should be indicated and supplemented
by other sources of information. Links between thematic classes should be clearly mentioned
if they exist, and any aggregation of subclasses into classes should be specified and justified.

Moreover, any GT class must be analyzed and validated before using it. The analysis of the
spectral features of images that accompany a GT, the use of some classification methods (semi-
supervised and unsupervised) and the spectral signature analysis of the classes formed must be
coherent with those of the GT classes. This cross-analysis is a minimal scientific process for the
validation of a GT. Any simplified or erroneous GT should not be used. Otherwise, the results
obtained would only be partial and hypothetical, and any decision based on it would have at least
two principal negative impacts:

– The first one is scientific since any rigorous classification method susceptible to provide
results close to reality would be mandatorily discarded if compared to other methods for
which results are close to the erroneous GT. Mixing up distinct classes such as water and
vegetation, even at a very coarse level of analysis is really of no interest; this does neither
contribute to the progress in scientific research nor to the increase of the precision sought in
the interpretation of the image informational content.

– The second impact is economical since involving very sophisticated means such as hyper-
spectral imaging is a very costly operation, which can lead to a low-value outcome when
coupled to an inaccurate GT dataset.
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3 Conclusion

The evaluation and validation steps are essential in the design process of classification
algorithms. Hence, they must be conducted with high rigor. To carry out these steps, the
GT data are indispensable and their precision strongly conditions the quality of the algorithms’
outputs from which conclusions can be drawn. In this paper, to illustrate this problem,
two examples of HSIs, namely Indian Pine and Pavia University, whose GT data are not
precise, were studied. The analysis of the spectral signatures of the GT classes revealed
this fundamental problem, where several classes exhibit a high heterogeneity. The existence
within a GT class of pixels having very different spectral signatures indicates the presence
of objects, which are physical of different nature. The main direct consequences of such
a situation are:

– The difficulty in evaluating a classification method, although supervised, semisupervised,
or unsupervised and mostly when evaluation is conducted toward a comparative study.
Indeed, the results are hardly exploitable and prone to subjectivity when an erroneous
GT is taken as an absolute reference. The problem is even more complex in the case, where
supervised or semisupervised methods are used, for which learning samples and/or the
number of classes are imposed. In these cases, using biased data as references in classi-
fication algorithms cannot be scientifically credible, especially when used in methods
requiring a learning stage. Such results are unsuitable for serious exploitation by the
end-user;

– The incoherence as regards the original motivation for introducing hyperspectral imagery.
Hyperspectral remote sensing data were introduced because they give more accurate and
more relevant information both spectrally and spatially compared to satellite multi-
component imagery or others. Exploiting HSIs by relying on inaccurate GT data goes
totally against this objective, not mentioning the cost of image acquisition as well as the
cost to elaborate the GT.

A GT must be constructed hierarchically according to several information levels depending
on the physical detailed meaning of the objects to be classified. If users wish to aggregate classes
representing physically different objects, they are free to do so but within another procedure
outside the evaluation of a classification algorithm. For example, if vegetated and nonvegetated
areas are mixed up, in a single class, the question of using precise and expensive sensors arises.
We recall that the choice to aggregate classes with physically different objects is not appropriate
because the primary purpose of classification is to discriminate objects and obtain the maximum
relevant information about their distribution in coherent classes.

In conclusion, the use of biased GTs is of no interest and their exploitation for the develop-
ment of methods and decision-making tools can bring nothing else than confusion. To fully
exploit relevant information from HSIs acquired by sophisticated sensors, the accompanying
GT data must, therefore, rely on objective criteria that depend only on the reality of the observed
data, whatever the intended application domain. Such an approach leads to maximum exploi-
tation of the data wealth, up to the technical and financial resources invested in the equipment
and acquisition campaigns. To allow this, the GT data must make mention of any detail collected
at source and carefully check and validate the information before utilization. Besides, classifi-
cation methods introducing a minimum of empirical knowledge can also be incorporated into the
GT data verification and validation processes. The exploitation of accurate information provided
by hyperspectral imagery requires a lot of scientific rigor, and this must also be the case for the
associated GT data. The more accurate the GTs, the more significant the results of any classi-
fication algorithm.

4 Appendix A: The Main Stages of the Affinity Propagation Method

Classification by AP first requires the calculation of a similarity matrix S. Each element sðxi; xkÞ
of this matrix indicates the similarity between pixels or objects (data points) xi and xk. Any type
of similarities can be used. Here, the negative squared L2-norm distance was used, that
is, sðxi; xkÞ ¼ −kAi − Akk22.
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Note that the diagonal elements sðxk; xkÞ of matrix S are not computed in the same way as
elements sðxi; xkÞ for xi ≠ xk. More precisely, sðxk; xkÞ ¼ p for all xk, with p being the pref-
erence parameter. In our case, it is initialized to the minimum value of the elements of S.

The AP algorithm calculates degrees of availability and responsibility to the other pixels in an
iterative way for each pixel. Initially, all pixels are considered as potential exemplars, though for
each one, a preference parameter p value is allocated so that it can be chosen as an exemplar.
Two procedures of message transmission (responsibility and availability) are used to exchange
messages between pixel xi and a candidate exemplar xk. The responsibility rðxi; xkÞ [Eqs. (5) and
(6)] is the message sent from pixel xi to candidate exemplar xk, indicating how well-suited pixel
xk would be as the exemplar for pixel xi. Alternatively, the availability aðxi; xkÞ [Eqs. (7) and (8)]
is the message sent from candidate exemplar xk to pixel xi, indicating how likely pixel xi would
choose candidate xk as its exemplar. This procedure identifies for each pixel the exemplar that
maximizes the sum of responsibility and availability denoted by E�ðxiÞ [Eq. (9)]. For pixel xi, the
pixel xk that maximizes frðxi; xkÞ þ aðxi; xkÞg either identifies xi as an exemplar if xk ¼ xi or
identifies xk as its exemplar.

The updated messages [Eqs. (10) and (11)] are damped by a constant factor, λ ∈�0;1½, to
avoid numerical oscillations that may arise under some circumstances.

Each iteration of the AP algorithm consists of (i) updating all responsibilities given the avail-
abilities, (ii) updating all availabilities given the responsibilities, and (iii) combining availabil-
ities and responsibilities to monitor the exemplar decisions and terminate the classification
process.

The main steps of the algorithm are given below.

Step 1: Initialization

For N pixels to be classified, R, A, and S are the responsibility, availability, and similarity
matrices of size N × N, respectively. rðxi; xkÞ, aðxi; xkÞ, and sðxi; xkÞ are, respectively, their
elements for pixels xi and xk. aðxi; xkÞ ¼ 0, for all xi, xk.

Step 2: Responsibility updates:

EQ-TARGET;temp:intralink-;e005;116;396rðxi; xkÞ ¼ sðxi; xkÞ −maxxj;xj≠xkfaðxi; xjÞ þ sðxi; xjÞg for xi ≠ xk; (5)

EQ-TARGET;temp:intralink-;e006;116;352rðxk; xkÞ ¼ p −maxxj;xj≠xkfrðxk; xjÞ þ aðxk; xjÞg: (6)

Step 3: Availability updates:

EQ-TARGET;temp:intralink-;e007;116;329aðxi; xkÞ ¼ min

�
0; rðxk; xkÞ þ

X
xj;xj≠fxi;xkg

maxf0; rðxj; xkÞg
�

for xi ≠ xk; (7)

EQ-TARGET;temp:intralink-;e008;116;268aðxk; xkÞ ¼
X

ðxj;xj≠xkÞ
maxf0; rðxj; xkÞg: (8)

Step 4: Making assignments:

EQ-TARGET;temp:intralink-;e009;116;232E�ðxiÞ ¼ arg maxxkfðrðxi; xkÞ þ aðxi; xkÞg; (9)

where E�ðxiÞ identifies the pixel xk as exemplar of xi.

Updated messages are sent iteratively after regularization at the current iteration l of respon-

sibilities R
⌢

l and availabilities A
⌢

l as follows:

EQ-TARGET;temp:intralink-;e010;116;155R
⌢

l ¼ λR
⌢

l−1 þ ð1 − λÞRl; (10)

EQ-TARGET;temp:intralink-;e011;116;107A
⌢

l ¼ λA
⌢

l−1 þ ð1 − λÞAl: (11)
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