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Abstract. A method to calculate the altitude-dependent, vertical, cloud-free line-of-sight (CFLOS)
using the fractional cloud cover from the European Centre for Medium Range Weather Forecasting
Re-Analysis Interim (ERA-I) dataset has been developed. This method enables users of airborne and
satellite collections of optical ground data to understand the statistical coverage limitations of these
collection systems by informing them of global probabilities of CFLOS versus altitude as well as
time of year. This method is accurate for regions between +60 deg of latitude; it should not be
applied to polar regions due to limitations in the underlying ERA-I data. Our CFLOS calculations
have been compared to the results of CloudSAT/Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation analysis and with Moderate Resolution Imaging Spectroradiometer
(MODIS) total cloud cover data. It is shown that the ERA-I reports on average less cloud cover
by about 7.5% (absolute) for regions within £60 deg of the equator relative to MODIS cloud cover
retrievals. Our CFLOS calculation leverages the resolution and diversity of ERA-I that enables spa-
tial coverage as well as frequency of occurrence CFLOS calculations for nearly all non-polar regions
on earth. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License.
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1 Introduction

The availability of ground observations of both active and passive airborne and satellite electro-
optic and infrared (EO/IR) sensors can be limited by the sensor’s cloud-free line-of-sight
(CFLOS) to the ground. Depending on the wavelength of interest, the clouds could be respon-
sible for scattering and/or absorptive losses in addition to providing significant increases in
thermal background radiation. To understand the availability and performance of airborne and
satellite sensors, it is important to understand the spatial and temporal frequency of clouds and
their structure from the ground to the top of the atmosphere. To assess the performance, we
present a method to determine the altitude-dependent, vertical, cloud-free line-of-sight (CFLOS)
using European Centre for Medium Range Weather Forecasting Re-Analysis Interim (ERA-I)
cloud data. The uniqueness of this approach is that it enables spatial (Iat/lon), as well as altitude
dependence and temporal coverage of the variability of the global vertical, cloud-free line of
sight. The Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data enables
global total cloud cover comparisons at high (lat/lon) resolution but provides no information
with respect to the altitude dependence. Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observation (CALIPSO)/CloudSAT can be used to construct altitude-dependent CFLOS but is
sparse in time with orbit repeats on the order of 16 days. The approach presented here utilizing
ERA-I data enables global analytics on the native 0.7 deg field in addition to altitude dependence
and temporal variation with model updates every 6 h for the entire globe. The following
describes the methodology/approach, mathematical process model, and resultant global
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comparisons to MODIS and CALIPSO/CloudSAT. This method of utilizing the ERA-I cloud
fields enables statistical views of cloud-free line of sight as a function of altitude as well as time
of year for nearly anywhere on the globe.

Over the years, methods to determine the CFLOS have been developed that use statistical
analysis of whole sky imaging (WSI) cameras'~ to determine CFLOS from the ground to space.
The works of Lund and Shanklin'? allowed for the creation of master probability matrices that
describe the CFLOS from the ground to space for any elevation angle given total sky cover. As
noted, this is for a surface observer to space and does not contain any information with respect to
the altitude-dependent CFLOS. In addition, the WSI data have been processed to provide per-
sistent statistics on CFLOS as well as calibrated whole sky irradiance values.® The resultant data
provide much needed inputs to statistical propagation analytics for active systems such as high-
energy laser weapons’ as well as free-space optical communications®” and passive imaging sys-
tems for EO/IR detection as well as astronomical viewing. The results of WSI are quite useful for
air to space or space to ground links but have limited utility in determining CFLOS as a function
of slant and vertical paths that are less than the entire atmosphere. Other researchers'*!" utilized
the results of Lund’s master probability matrices and cumulative clouds to construct CFLOS at
limited altitudes. However, their data are highly dependent on relative cloud types and frequency
that were determined by Lund. To improve this data, one can look across the globe at other
sources of cloud information, but this is complicated by the sparseness of the data and diversity
of these reporting metrics.'”

An ongoing challenge has been to determine a method of calculating CFLOS as a function of
altitude. A detailed analysis of CFLOS versus altitude as well as look angle was performed by
Reinke et al.'? utilizing CloudSAT cloud profiling radar and coincident CALIPSO lidar data. The
data have proven very useful for global trends and comparisons and is one of the best estimates of
CFLOS as a function of both look angle as well as altitude. Unfortunately the CloudSAT data are
sparse in time, as the repeat rate of the satellite is 16 days; thus, only long-term statistics can be
evaluated via analysis of years of data. Here, we present a method to calculate CFLOS based on
an isotonic interpolation of probabilities. We utilize the ERA-I dataset to construct altitude-
dependent CFLOS and construct comparisons to CloudSAT CPR CFLOS ' as well as total cloud
cover comparisons to MODIS data.'*

2 Overview of ERA-I Data Set

The probability of CFLOS has been analyzed using the European Centre for Medium Range
Weather Forecasts Re-Analysis or ERA-Interim (aka ERA-I) dataset. The ERA-Interim
dataset'>1® supplies cloud fraction (coverage) as a function of pressure/altitude. The first level
starts at 0.1 hPA (= 65 km alt.) and increases in pressure to 1012 hPA (ground level) in a quasi-
logarithmic fashion yielding higher spatial resolution near the ground. This results in vertical
steps of hundreds of meters to 1 km for the first 10 km of altitude and 1- to 2-km steps up to
20 km of altitude. The altitude-dependent cloud fraction is the total cloud cover within each
altitude bin when viewed from above (fractional areal coverage). When looking at the cloud
fractional data on a global scale within the ERA-I dataset, no clouds were found above
20 km, which yields 39 useful vertical bins (ground to 20-km altitude). In addition to fractional
cloud coverage versus altitude, ERA-I provides four other useful cloud data fields: the low (LO)
cloud cover (clouds < 2 km); medium (MED) cloud cover (2 to 6.5 km); high (HI) clouds
(> 6.5 km); and total cloud cover, which in our case is simply 1 minus the CFLOS from
20 km to the ground along a vertical path. The ERA-I data set that was utilized provided several
cloud metrics on 0.7 deg x0.7 deg spatial grid with data every 6 h. The ERA-I data from 2017
was analyzed for the globe comprising: 1460 X 60 X 256 x 512 (time, pressure/altitude, latitude,
and longitude) data points.

2.1 Calculation of CFLOS from ERA-I

To determine the CFLOS, we need to take fractional cloud coverage as a function of altitude
and construct a downward-looking probability of cloud obstruction (PCO), i.e., (1 — CFLOS),
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Table 1 PIE calculation for 3 levels from the low, mid, and high cloud fields provided by the ERA-I
dataset.

3 Level PIE—Probability of Cloud Obscuration (1-CFLOS) Altitude range
PCO(0) = 0 0to<2km
PCOLo =Py 2 t0 6.5 km
PCOwvep =Pa +Ps — (PanPpg) 6.5 to 20 km
PCOy =P4+Pg+ Pc = (PanPg)+ (PanPg)+ (PenPg) + (PanPgnPg) Total cloud cover

as we go up in altitude. This is done in a two-part process, described in brief here, and in more
detail below. First, we compute the probability of cloud obstruction for the course LO, MED, and
HI altitude regimes using the values provided by ERA-I in Table 1. This uses the combinatorics
principle of inclusion and exclusion (PIE) to determine the PCO at each coarse altitude when
looking down. Next, we calculate PCO(1) through PCO(39) for the high-resolution altitude bins
1 to 39. The calculations of PCO for these high-resolution altitude bins 1 to 39 are normalized
with values calculated in the first step so that they are consistent with PCO; g, PCOygp, and
PCOy;.

STEP 1: Calculation of LO, MED, and HI altitude PCO

We employ the combinatorics PIE to compute PCO; o, PCOygp, and PCOy;. This is a
method of combining probabilities—in our case, fractional cloud coverage as a function of
altitude—to compute a singular probability. Our use of PIE is only valid for statistics where
the individual events are not correlated, and so it cannot be applied directly to the higher spatial
resolution cloud coverage (= 39 useable altitude bins) because the cloud structure is correlated
on the vertical scale of hundreds of meters to perhaps as large as 2 km. There are methods to
calculate PIE accounting for correlation in the data; however, they become computationally
intensive and perhaps more importantly, rely very heavily on knowing the correlation between
every single layer given by the 39 altitude bins. This would imply the user has a priori knowledge
of the vertical cloud structure correlation not only seasonally (temporally) but also globally
(spatially). In fact, one can show that a naive direct application of PIE to the high-resolution
bins will yield results that contradict the total cloud cover provided by ERA-L

However, the principle of inclusion/exclusion can be used to combine the probability of
a cloud obstruction (1-CFLOS) given by the ERA-I lower spatial resolution LO, MED, and
HI cloud coverage values. This is approximately valid because the LO, MED, and HI clouds
are vertically separated by a large enough spacing to be sufficiently uncorrelated to use PIE
combinatorics. A detailed look at global cloud vertical and horizontal structure was performed
by Guillaume et. al.'” utilizing CloudSAT data and a summary of the vertical cloud extent is
shown in Table 2 of their work. The clouds present between each of the three coarse levels
exhibit vertical structure on average that is less than the step size from LO to MED to HI in
the ERA-I database. This provides for additional confidence in our assumption that the LO,
MED, and HI clouds are sufficiently uncorrelated for combinatorics. Two notable exceptions
are nimbostratus (NS) clouds with a mean thickness of 4.7 km'” and deep convection (DS) with
a mean thickness of 9.3 km.!” In general these are LO probability cases as DS occurs <5% to
10% of the time'® and NS is rare except in polar regions > 60 deg,'® a region we are not
considering for our CFLOS calculation.

Figure 1 shows how we construct a three-level PCO by assessing the Venn diagram for each
level. Starting at Cloud A (ERA-I LO cloud coverage), we simply determine the PCO to be the
spatial (areal) coverage provided by Cloud A. As we go up through the atmosphere to a point just
above Cloud B, we then need to determine the combination of probabilities of seeing a cloud
P, + Py and subtract the region that has been double-counted P, N Py. This approach is con-
tinued for our third level, and we thus have the probability of cloud obscuration for three distinct
altitudes and is outlined in Table 1.

An additional field, total cloud cover, reported in the ERA-I dataset was plotted against the
PCO(HI) value, derived total cloud cover from combinatorics, and was found to be linear with
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Table 2 ERA-I minus MODIS total cloud cover global statistics.

Total Cloud Cover Global Comparisons for Latitudes between +60 deg

Month for 2017 Mean (ERA-I minus MODIS) Std. dev. (ERA-I minus MODIS)
January -0.075 0.128
February -0.084 0.115
March -0.075 0.106
April —-0.074 0.108
May -0.071 0.100
June —-0.079 0.115
July —-0.079 0.120
August —-0.078 0.118
September -0.070 0.108
October —-0.073 0.105
November -0.075 0.110
December —-0.083 0.121

| ClowdClhigh)
. cloudB(mia) |

Ground object

Fig. 1 The three-level PIE to determine the probability of seeing a cloud as a function of altitude.

a fit of x = 0.999 y (R* > 0.999), see Fig. 2. This further strengthens the argument that the
clouds in the LO, MED, and HI cloud cover bins can be considered uncorrelated within the
ERA-I data set.

STEP 2: Calculation of PCO for high-resolution altitude bins 1 to 39

In our application, as we increase in altitude the PCO either remains the same or increases as
we go through cloud layers. That is, the probability of obstruction monotonically increases, and
this is a hard constraint. For this reason, we develop an isotonic interpolation model to approxi-
mate the vertical CFLOS from any of the altitude bins 1 to 39 looking down to the ground.

The isotonic interpolation is performed between the three boundary conditions: PCOy g,
PCLOSy\gp, and PCOyy at altitudes of 2, 6.5, and 20 km, respectively. To perform this calcu-
lation, we take the cumulative sum of the fractional (area) cloud coverage altitude bins from
with-in the ERA-I model from the ground to 2 km. Using the cumulative sum on the higher
spatial resolution scale allows the data we actually do have to inform the rate at which our inter-
polator increases/accumulates probability between each of these coarse altitude bins. We then
normalize the cumulative sum at the 2 km point to the 2-km PIE value—knowing that the cumu-
lative sum of fractional cloud cover should equate to the cloud cover from the 2-km PIE point.
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Fig. 2 The total probability of seeing a cloud as derived from the three-level PIE approach is plot-
ted against the total cloud field reported by the ERA-I data. The data shown represent nearly five
million points around the contiguous United States for the year 2017 (1460 times, 38 latitudes, and
89 longitudes).

That is, we enforce the boundary condition to ensure that the endpoints maintain correct cloud
coverage values. In our case, the ground has no clouds and the 2-km point is equivalent to the
LO cloud PCOyg value. The points between the ground and 2 km are then interpolated by
the normalized cumulative sum from the ground to 2 km—resulting in a cloud obstruction profile
(1-CFLOS) from 0 to 2 km in altitude.

altEnd
cumulativeCloudFraction(alt) = ccf(alt) = Z cloudFraction(alt). (1)
altStart

This process is repeated from the 2- to 6.5-km mMED cloud level (normalizing the cumu-
lative sum profile endpoints to the end point PIE values PCO; g (2 km) and PCOypgp (6.5 km)
and finally, for the 6.5- to 20-km cloud level (PCOy;). We concatenate the results and create a
PCO (1-CFLOS) as a function of altitude with vertical resolutions equivalent to the original
ERA-I data. These calculations are summarized by the piecewise defined interpolation function

ccffc(fZ(alllrzl) X (PCOLp — PCOg) + PCO(0 km) alt € [0,2]
PCO(alt) = { it @il x (PCOyep — PCOLo) +PCO(2 km) — alt € (2,6.5] , )
cccf?%dlli_zn) X (PCOy; — PCOyep) + PCO(6.5 km)  alt € (6.5, 20]

where ccf stands for the cumulativeCloudFraction as calculated using Eq. (1).

This calculation is shown graphically in Fig. 3, where the cloud fraction versus altitude from
the ERA-I data on the left and the resultant CFLOS is shown on the right. In vertical regions
where clouds exist the CFLOS reduces to account for the existence of clouds and when the
fractional cloud coverage goes to zero, we see the CFLOS remain constant as a function of
altitude until an additional cloud is found. There is a specific set of cases where this will result
in inaccurate results: noteworthy is any region where we have two significant fractional cloud
(>0.75) layers separated by a region of no clouds within either the LO, MED, or HI altitude
zones. The cumulative summation and normalization will smooth over the first cloud, resulting
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Fig. 3 (a) Fractional cloud coverage from ERA-I data. (b) Derived CFLOS using the three-level
PIE and cumulative summation normalization.

in clearer conditions at the lower altitude bin than otherwise should be seen; fortunately, this is
found to occur < 1% of the time.

3 Process Model Justification

In the preceding section, we described an isotonic interpolation of probability. We now describe
this modeling in a more rigorous fashion and provide a reasonable justification for its use.

3.1 Orthographic Projection and Geometric Probability

The topic of geometric probability is multi-disciplined and covers several niche probability
problem types.'® However, for our purposes, here, we are using the term geometric probability
to describe a specific ratio of measures that might be found in the subject. Consider a cell, or
element of volume if one prefers, Ry, in an over-approximating rectangular partition of a region
R of the atmosphere. And let us then define the right rectangular solid

kiky _
Sea ={(x,y.2) ER|xisy Sx <X, yjo1 LY LY 2, <2 L2 ) 3)

which is the union of R;j 1), - - - R;jr,- The intersection of the clouds C with SIEZI,‘ is simply

Crr, =Cn SIEZIT The upper face F of the cylinder will be a rectangle in the plane z = z;,.
We orthographically project Cy , onto F; via the mapping Py i :S’Eé‘“ - F ip=
(x,¥,2) = (x,y.2,). Let u denote the Lebesgue measure on F . Then, the geometric proba-

ki Ky

bility of cloud coverage for the cylinder SE:’|‘ is given as

/‘(Pk,,ku(ck,,ku))

- : 4
Gk, k, u(Fr) 4

so long as the projection Py, (Cy ) is measurable. An interpretation of this probability is that
it is the likelihood g, ;, that sighting along a vertical ray from altitude k; to altitude k, will be
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blocked by the clouds, PCO. Let k be the altitude index of ground and define g, ,, = 0. We will

let py, x, denote the complementary probability of CFLOS for Slég

3.2 Bernoulli Processes

Let D = {(x,y)|(x,y.2) € S&%}, a rectangle of side lengths Ax and Ay. Then, for any (x, y) €
D chosen uniformly at random, we will assign to B Kok, the value of 1 if we have CFLOS through
S]&’ﬁ‘ and O else. {By, 4, } is then a two-parameter family of Bernoulli random variables with
probability of ‘success’ py, , and failure gy, x .

Recalling that S]Eé,{“ = Ui“:kl 41 Rijj and keeping firmly in mind the definitions made
heretofore, it should be clear that there are strong relationships between members of the
family {By,, } and the associated distribution parameters consistent with the underlying
geometry. Indeed, we have in general the constructive relationship py = P(By, = 1) =
P(By, x + By, = 2). We will single out of the family the one step variables By_; ;, and denote
them simply B;. The recurrance probability relation is then calculated as

pkl~ku = P(Bk,,k“ = 1) = P(Bkl,k“—l +Bk“ = 2) =... = P(Bk1+] —+ ... +Bk“ = ku _kl)' (5)

Contextualizing within our application, we now observe the following. Our problem data is
the distributional parameterization { p; } 1 1,1 of the Bernoulli process (B} 11+ the fractional
(area) cloud coverage altitude bins from with-in the ERA-I model. We are aiming to determine
the distributional parameterization { Pk,.k}llilkl 41 of the Bernoulli process {Bk,.k}lizlk, +1» and
Eq. (5) provides the connection between what we are given and what we desire. The goal
of our isotonic interpolation is in fact to model py , in terms of the p;, I € [k;k], where
kikl =k;+1,... k.

3.3 Probability Models

We will now introduce reasonable arithmetic and geometric recurrence models for p;, ; in terms
of the p;, | € [k;k], and then indicate why we proceed with the arithmetic model as the basis
for our isotonic interpolation model and how this arithmetic model gets configured into an
interpolant.

3.3.1 Arithmetic model development

To develop the arithmetic model, we examine the complementary probability, which can be
expressed using De Morgan’s law as

Qi k, = P((Bi,k,—1 = 0) U (B, = 0)), (6)
= P(By,x,-1 = 0) + P(By, = 0) = P((Bi,t,—1 = 0) N (B, = 0)), (7
= P(By, x,—1 = 0) + [P(By, = 0) — P(By, = 0|By, ,—1 = 0)P(By, ,—1 = 0)], ()

where the second equality follows from the PIE. Rewriting the last member of the equation in
terms of distributional parameters and rearranging, we have the difference/recurrance relation
9k, k, — Dk h,—1 = d where

d = qy, — P(By, = 0|By, x,—1 = 0)q, x,-1- )

We focus on difference field d. Appealing to the geometry g, — gy« -1 is a difference in
the measures of the cloud projections of the k, partition strata and the cloud projections
from the strata within a preceding right rectangular cylinder (a column of atmosphere below).
Apparently, this difference can be negative whereas the difference field cannot. The probability
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P(By, = 0|By, x,—1 = 0) is the premodifier on the prior that appropriately conditions the field so
that this never occurs. In the case of positive associations between the random variables B, and
By, 1, this probability is larger and reduces the difference field. In the case of negative asso-
ciations between these random variables, the probability is slight and increases the difference
field. In effect, which is the case amounts to whether we are dealing with the same clouds or not
as we enter the k,’th strata. Let us assume that we are dealing with a portion of atmosphere of a
size that suggests positive association between cload masses. The P(By, = 0|By, x,—1 = 0) then
serves to diminish the positive attibution of the difference field to the accumulation captured by
this difference equation.

The remaining issue is that we do not have access to any data in our problem to provide
P(By, = 0|By, x,—1 = 0). This difference field modifier cannot be sensibly computed from the
q;. For a given 0 <m » < 1, there are any given number of regions Pm,, in F; that yield the
geometric probability m,. And while those regions cannot be dispersed, we know of no bases
for an argument that they have centrality or tendency with respect to location in F,. Generally
speaking, we do not know what the blotches will look like or where they will be, so we cannot
make inferences about the projection of a cloud distribution in a cell, or the cloud distribution in
the cell itself, using ¢g;. We lose the geometry in the measure of the projection. Based on this
observation, we can only say that the extent to which g, may potentially contribute positively to
the difference gy, x, — i, x,1 18 directly proportional to g, . Defining a;  as the proportionality
constant, we posit

9k, k,—1 = ik, — Ak, 9Dk, (10)

We assume consensus across strata with respect to the constant of proportionality, which we
will denote by a. We have then the arithmetic recurrance model

Gk k—1 = ik, — 4Gk, - (11)

3.3.2 Geometric model development

Our geometric model comes to us directly from the Conway—Maxwell-Poisson (CMP) binomial
distribution.? This distribution generalizes the Poisson binomial distribution, which character-
izes Bernoulli sums, to the case were the probabilities of success are associated.”’ We obtain
from the CMP binomial distribution

1

Pik, = P(Bi g1 + By, =2) = o Phk-1Pu (12)
kpk,—1
where
CLkot = Qpk19u + 27 (k=1 Pu + Pry=19u) + Proky=1 Pu- (13)

If our CFLOS events over strata were independent, v and CZ,’,{ _; = 1, and we get a very
clear-cut product relationship between py, ; and the p;. In the case of our assumed positively
associated events, however, —oo < v < 1, which yields 0 < C?k i < 1, scaling the product up

appropriately. This scale factor is nonlinear in v and dependent on k;, k,. We have no clear
synthesis method through which to obtain v(k;, k,,) from our problem data. This is a beautiful,
but complicated model. But treating with it as we did with the difference model, we have,
upon defining b, as the proportionality constant

Pk, = br, P k1P, - (14)

Assuming consensus across strata in the correction factor, call it b, we have the geometric
recurrance model

Pk, = bProky—1 P, - (15)
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3.4 Sensitivity Analysis and Justification of Arithmetic Model Use
Solving the arithmetic recursion model yields us

kn+l

qkn—]vkn+l = qkn—1~kn + Z aqi (16)
I=k,+1

while solution of the geometric recursion model provides
kp1 kn1
Dy kpyy = ( H bl)( H pl)l’k,,l,k,,- (17)
I=k,+1 I=k,+1

Let us now compute the relative sensitivities of these recursion solutions with respect to their
respective proportionality constants. In the case of the arithmetic recursion direct computation
provides

ak aqkn—hkwr] _ aqu < 1 (18)
- k, -
Dk ks day T Zl:ﬁcln+l aq;

when defined. Equality only holds in the case that g, _ , and all g;, [ # k, in the summation are
0. In the case of the geometric recursion direct computation provides

bk apkn—l Kt
P, ke Obr

=1, (19)

when defined.

The takeaway is the following. In assuming consensus in the proportionality constant, we are
inducing a perturbation away from the more ideal strata dependent proportionality constants.
The percent change in the correct probabilities due to a percent change in the parameters due
to these pertubations is significantly less in the case of the arithmetic model than would be seen
with the geometric model. Simply put, the geometric model is appreciably more sensitive to our
gross practical simplifications. For this reason alone, we make use of the arithmetic model instead
of the geometric model here, even though the latter has a more philosophically pleasing basis.

3.5 Arithmetic Recurrence Model Use in Interpolation

Suppose then that we have a two-point boundary value problem with given initial condition
qr, ,x, and final condition gy, ; , and that we seek g;  for k € [k,k,1]- Let us return to

our Eq. (16) solution to the arithmetic recurrance relation with the consensus assumption back
in force. We have

kn+l
iy ks = iy T D i (20)
I=ly +1
from which we readily obtain
a4 = qku-1~knk>1 l_ Ak, Ky ’ 1)
Zzgknﬂ qi
and for k € [k,k,, ], we have
k
D ki — Db ks
Qi k = Gk b, + (%) Z q1 (22)
Ez:an q I=k,+1

as a isotonic interpolant between the boundary data. The final piece of mathematical detail is
realizing that this is the interpolant used repeatedly along with accurate PIE generated boundary
data to obtain isotonic interpolation Eq. (2).

Journal of Applied Remote Sensing 028502-9 Apr—Jun 2022 « Vol. 16(2)



Willitsford, Hicks and Bowen: Altitude-dependent probability of vertical, cloud-free line-of-sight. ..
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Fig. 4 Mean total cloud cover for April 2017. Left: ERA-I data analysis results from this study using
PIE combinatorics and cumulative-summation normalization. Right: MODIS on NASA’s Terra
Satellite."

4 Comparisons: MODIS Total Cloud Comparison

The global total cloud cover from the ERA-I data was averaged on a monthly basis for 2017 and
compared to the MODIS data'* for the same period by looking at the difference in cloud cover on
a latitude and longitude grid. The 0.1 — deg MODIS data were interpolated and downsampled to
the 0.7 — deg ERA-I data and directly compared by taking the difference between the ERA-I
total cloud cover and MODIS total cloud cover. The mean difference was calculated for latitudes
between £60 deg and was found to be —0.074 with a standard deviation of =~ 0.11. This con-
firms other researchers’ findings>>* that the ERA-I data are generally in good agreement with a
bias toward clearer conditions and are relatively inaccurate at the poles. By utilizing the MODIS
total cloud cover as a source of calibration data, we can feel confident in our PIE combinatorics
approach to the ERA-I data set that uniquely enables global altitude-dependent CFLOS metrics
with temporal variation as the cloud fields in ERA-I are updated every 6 h. Figure 4 shows the
mean total cloud cover for the month of April 2017; on the left is the ERA-I data and on the right
is the MODIS data. Figure 5 shows the difference in total cloud cover for December 2017—the
color scale has been set using the mean as the center with the limits set to £2 standard deviations.
A summary of the total global cloud cover and and statistical comparisons to MODIS broken
down by month is shown in Table 2. The monthly breakdown shows little variability in the
relative total cloud cover for ERA-I and MODIS with a consistent bias of ERA-I toward margin-
ally clearer conditions. See Appendix A for ERA-I total cloud cover minus MODIS total cloud
cover for each month of 2017.

-0.325 -0.204 -0.083 0.038 0.159

Fig. 5 Difference between ERA-I and MODIS total cloud cover for December 2017. The color
scale has been set using the mean difference as the center and the limits set to +2¢ as described
in Table 2 for December. See Appendix A for a detail of each month.
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Fig. 6 Probability of vertical CFLOS from 9.6-km altitude in April. (a) ERA-I data analysis results
from this study with three-point PIE and cumulative-summation normalization. (b) CloudSAT/
CALIPSO (Reinke et al.).?®

5 Comparisons: CloudSAT Comparisons

We also compared the ERA-I derived vertical CFLOS to the CFLOS determined by Reinke
et al.'® using CloudSAT data. Figure 6 shows the average over the month of April of the vertical
CFLOS from 9.6-km altitude; on the left is the ERA-I-derived CFLOS and on the right is the
CloudSAT-derived CFLOS. The data were then directly compared by taking the difference
between the ERA-I and CloudSAT data. This was performed by interpolating the 0.7 — deg
gridded ERA-I data to the 1 — deg gridded CloudSAT data. The mean difference was calculated
for latitudes between =60 deg and was found to be <0.025 for most altitudes below 10 km with
larger differences at higher altitudes. The standard deviation was larger with o = 0.2 for each
altitude. As noted earlier in the comparisons to MODIS, the total cloud cover in ERA-I has a bias
toward clearer conditions; this is also directly seen in the altitude-dependent CFLOS calculated
with ERA-I and compared to CloudSAT/CALIPSO. Comparative statistics of CFLOS for each
altitude are shown in Table 3. Analyzing the results of this table, we can see that the difference in
CFLOS is seen to grow mostly between = 11 to ~ 16 km. The higher-altitude cirrus clouds
within the ERA-I dataset are underrepresented relative to CloudSAT/CALIPSO and lead to
lower total cloud cover when compared to MODIS. Figure 7 shows the difference in CFLOS
for April from 9.6-km altitude—the color scale has been set using the mean as the center
with the limits set to £2 standard deviations. Upon careful inspection, one will notice that the

Table 3 Difference in vertical CFLOS (ERA-I minus CloudSAT) for the month of April as a function
of altitude for latitudes between +60 deg.

Mean (ERA-I Std. dev. (ERA-I Mean (ERA-I Std. dev. (ERA-I
Alt km minus CloudSAT) minus CloudSAT) Alt km minus CloudSAT) minus CloudSAT)
0.96 0.07 0.155 10.56 -0.027 0.175
1.92 0.001 0.176 11.52 -0.032 0.177
2.88 -0.018 0.177 12.48 -0.039 0.177
3.84 -0.020 0.177 13.44 —0.048 0.175
4.80 —0.021 0.177 14.40 —0.060 0.173
5.76 -0.020 0.176 15.36 -0.072 0.174
6.72 —-0.021 0.175 16.32 -0.082 0.177
7.68 -0.016 0.176 17.28 —0.088 0.179
8.64 -0.013 0.176 18.24 —0.088 0.179
9.60 —-0.025 0.174 19.20 —0.088 0.179
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-0.374 -0.199 -0.025 0.149 0.323

Fig. 7 Difference between ERA-I and CloudSAT CFLOS for April from 9.6-km above the ground.
The color scale has been set using the mean difference as the center and the limits set to +2¢ as
described in Table 3 for altitude = 9.6 km. Appendix B contains global maps for additional altitude
levels.

CloudSAT/CALIPSO data have a linear structure that is clearly the result of the satellite’s orbit.
Additional global plots of the altitude-dependent difference in ERA-I CFLOS and CloudSAT
CFLOS can found in Appendix B.

In addition to global analysis, a detailed look at the United States was performed for the
ERA-I data from 2017. Figure 8 shows the mean CFLOS from 9.6-km altitude for 2017 over
the United States. Outside of the southwest United States, one would expect to have a CFLOS to
9.6-km altitude approximately half of the time.

6 Temporal Analysis

One of the major advantages of using the ERA-I data is the 6 h temporal resolution that is avail-
able. Utilizing the time domain data, we are able to assess the frequency of occurrence of clouds
around the globe. We approach this by calculating a family of percentile based curves. Each
family of color curves represent the percentage of time that a certain CFLOS will be observed.
Thus, the cloud-free line-of-sight can be thought of as the amount of ground or sky in a vertical
slice one will observe that is cloud-free, while the color curves tell you how often you would
expect to see that much. Figure 9 shows the CFLOS derived herein from the ERA-I data as a
function of altitude. The left side is for the Johns Hopkins Applied Physics Laboratory facility

120" W 10 W 100" W 90" W 80" W 70°W

0 10 20 30 40 50 60 70 80 90 99
CFLOS from 9.6 (km)

Fig. 8 The 2017 year-long mean vertical CFLOS from 9.6-km altitude—derived from the ERA-I
cloud data as described herein.
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Fig. 9 Vertical CFLOS for summer and winter. Left: JHU/APL Laurel Maryland. Right: Yuma,
Arizona. Winter in general tends to have the most clouds in the US. Large drops in CFLOS
as a function of altitude are indicative of cloud layers. The families of colored curves represent
the percentage of time one would expect to have a certain CFLOS to the ground.

located in Laurel, Maryland, and the right side of Fig. 9 shows Yuma, Arizona. The top plots are
a result of aggregating the CFLOS curves for the summer (June, July, and August) and the bot-
tom sets of curves are from aggregating the winter CFLOS (December, January, and February).
The data show that in general, winter has more clouds in both Laurel, Maryland, and Yuma
Arizona. If one focuses on the plot of the CFLOS for Yuma Arizona in the winter (bottom-right
of Fig. 9), the lower altitudes are generally cloud-free. As we go up in altitude, the middle per-
centile curves start to turn toward lower CFLOS between 7 and 12 km, indicative of cloud layers.
In any of these types of plots, the cloud layers become immediately obvious by looking for large
drops in CFLOS as a function of altitude.

7 Conclusions

A method of calculating the CFLOS from the ERA-I data has been developed. The results of the
ERA-I total cloud cover have been compared on a global scale to MODIS for latitudes between
460 deg and in general are shown to under-predict clouds relative to MODIS with total cloud
cover ~7.5% less than MODIS with a standard deviation of 10%. Additionally, the CFLOS
derived from the ERA-I dataset has been compared to CloudSAT CPR data as a function of
altitude on a global scale for latitudes between +60 deg and shows on average good agreement
with a larger standard deviation of 0.2. In addition to spatial analysis of CFLOS (latitude, lon-
gitude, altitude), we have looked at the ERA-I data every 6 h over multiple years, thus enabling
the end-user to look at the temporal distribution of CFLOS as well. The families of percentile-
based curves were developed to represent the percentage of time one would expect to have a
certain cloud-free-line-of-sight to the ground as a function of altitude. It is understood that the
ERA-I cloud derivation is not perfect and in some rare (< 1% of the time) instances it will over-
predict the CFLOS for lower altitudes. However, our method of retrieving altitude-dependent
CFLOS from ERA-I data enables many engineering tasks not previously possible. The ERA-I
technique provides for vertical, altitude-dependent CFLOS on a global scale with temporal den-
sity; e.g., profiles every 6 h. CloudSAT/CALIPSO retrievals provide for very accurate measures
of the vertical structure but are temporally sparse. The ability to look at the vertical structure on a
more dense temporal scale provides for operational decisions with respect to airborne sensors for
optimum altitudes of operation utilizing the statistics of CFLOS for day versus night, winter
versus summer etc. Future iterations would include additional knowledge of vertical cloud
coherence to refine the probability models.
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8 Appendix A: ERA-l Minus MODIS Total Cloud Cover

The global total cloud cover difference for ERA-I minus Modis has been analyzed to understand
statistical variability over a years? worth of data. The monthly breakdown shows little variability
in the relative total cloud cover for ERA-I and MODIS with a consistent bias of ERA-I toward
marginally clearer conditions (Fig. 10).

-0.22 -0.11 0 0.11 0.22

Fig. 10 The ERA-I minus MODIS total Cloud Cover, monthly average for 2017. Color scale has
been set to a zero mean difference with ~ 4 24 limit. Statistics for each month are described in
Table 2.
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9 Appendix B: ERA-I CFLOS Minus CloudSAT CFLOS

Global altitude dependent differential CFLOS for ERA-I and Cloudsat. Lower altitudes show
very close agreement with altitudes above 10 km yielding marginally larger differences due to
ERA-I under representing the higher altitude cirrus clouds (Fig. 11).

Alt. = 8.64 km Alt. = 9.6 km Alt. =10.56 km Alt. = 11.52 km

Alt. = 12.48 km Alt. = 13.44 km Alt. = 14.4 km Alt. = 15.36 km
-0.35 -0.175 0 0.175 0.35

Fig. 11 The ERA-I CFLOS minus CloudSAT CFLOS as a function of altitude. Color scale has
been set to a zero mean difference with ~ 4 2¢ limit. Statistics for each altitude are described
in Table 3.
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