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Abstract. Ultra-spectrally resolved infrared measurements from aircraft and space-based obser-
vations contain information about tropospheric carbon monoxide (CO) and ozone (O3), as well
as other trace species. A methodology for retrieving these tropospheric trace species from such
remotely sensed spectral data has been developed and validated for the National Airborne
Sounder Testbed-Interferometer (NAST–I). The Fire Influence on Regional to Global Environ-
ments and Air Quality (FIREX-AQ) field campaign was conducted during August 2019 to inves-
tigate the impact of wildfire and biomass smoke on air quality and weather in the continental
United States. NAST–I CO andO3 measurements from the recent FIREX-AQ field campaign are
presented and used to estimate wildfire plume age. Results show enhanced levels of CO in the
evolving plume as it is transported away from the fire ground site, and its plume age is associated
with the plume distance in both the vertical and horizontal directions from the wildfire location.
These results are enabled by the moderate-vertical and high-horizontal resolution obtained from
the NAST–I IR spectrometer onboard the NASA ER-2 aircraft. This study advances our knowl-
edge of fire-induced plumes with their evolution and age characterized in three-dimensional
space using information from NAST–I retrieved CO and O3 and relative changes in their con-
centrations. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International
License. Distribution or reproduction of this work in whole or in part requires full attribution of the origi-
nal publication, including its DOI. [DOI: 10.1117/1.JRS.16.034522]
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1 Introduction

In recent decades, wildfires have gained more of our attention as their number of occurrences,
sizes, and intensities have significantly increased, likely due to dryer and hotter conditions from
climate change. Wildfire-induced pollutants and smoke (i.e., poor air quality) pose great risks
to human health, although wildfires can be an important natural event in many ecosystems. The
chemistry and composition of smoke from wildfires are being studied to improve our under-
standing of the relationship between combustion and air quality, weather, and climate and the
ability to forecast.1

Carbon monoxide (CO) is one of the major pollutants due to combustion.2 The significance
of CO in atmospheric chemistry was recognized long ago when a photo-chemically driven chain
reaction was recognized linking the tropospheric cycles of CO, methane (CH4), and ozone (O3)
with those of the hydroxyl radical (OH) and hydroperoxyl radical (HO2).

3 O3 is another major
pollutant that can also cause several health problems to human beings.4 O3 plays a significant
role in tropospheric chemistry; details on ozone production from wildfires can be found in other
studies.5,6 Previous studies and observations have suggested some degree of O3 production as
wildfires generate emissions of O3 precursors, such as NOx (NOþ NO2) emitted from wildfires
and thus increasing peroxyacetyl nitrate (PAN) as well.6 O3 production decreases quickly down-
wind of combustion.7 However, O3 production can be complicated and depends upon many
factors, e.g., aerosols in a biomass plume from a wildfire reduce the photolysis rates of NO2

and O3. The impact of lower photolysis rates on O3 production is not clear. Reducing the pho-
tolysis rates can either increase or decrease the net O3 production by changing both the O3
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production and loss rates.6 O3 plume characteristics from wildfires are not as obvious as that
for CO plumes because O3 is not directly produced by wildfires, and it has a short lifetime in
comparison with that of CO. However, both CO and O3 within wildfire plumes are particularly
interesting as they are related to the plume age and associated plume evolution and transport.
Observations were made of ΔO3∕ΔCO due to wildfires for biome and plume age,6 indicating a
positive relationship between ΔO3∕ΔCO and plume age. Tropospheric chemical reactions
involving CO extend their influence on air quality and global climate through accumulation
of greenhouse gases. CO can be transported a great distance from its original source due to its
relatively long lifetime (averaging about 2 months) in the troposphere.

The Fire Influence on Regional to Global Environments and Air Quality (FIREX–AQ)
experiment in August 2019 is the first joint field campaign conducted by NOAA and NASA
addressing wildfire emissions and their impact on air quality and climate. It was dedicated
to the sampling and characterization of fires and their impact on air quality and weather from
the point of trace species emissions.8,9 Ground, airborne, and satellite measurements were made
during the FIREX–AQ field phase. The National Airborne Sounder Testbed-Interferometer
(NAST–I) is an airborne interferometer sounding system. It provides a highly spatial linear
resolution that is equal to 13% of the aircraft altitude at nadir and 13 instrument instantaneous
fields-of-view (IFOVs) across the aircraft track from 13 scan angles (i.e., 2.6-km IFOV,
∼3.4 km apart on the ground from an ER-2 altitude of 20 km). NAST–I spatially scans and
provides high-spectral resolution (0.25 cm−1) measurements within the spectral region of 645
to 2700 cm−1.10–15 Here, we use measurements from NAST–I on board the NASA ER–2 aircraft
to study fire-induced CO plumes. NAST–I continuously covers a space large enough to monitor
the wildfire plume from its origination, evolution and transport, providing three-dimensional
(3D) distributions of geophysical parameters including O3 and CO with a higher spatial reso-
lution compared with satellite IR-ultraspectral sensors, and thus, it benefits our study of wildfire
plumes.16 NAST–I data used in this study were collected under clear-sky conditions.
Geophysical parameters cannot be retrieved with NAST–I under opaque clouds as infrared
measurements are not able to penetrate opaque clouds.14 Materials presented in this study are
a follow-up to the work of Zhou et al.16 A brief description of the FIREX–AQ experiment, obser-
vations, and wildfire plume age estimation methodology is given in Sec. 2. Results and discus-
sion are presented in Sec. 3. Summary and concluding remarks follow in Sec. 4.

2 Experiment, Observation, and Plume Age Estimation Methodology

FIREX–AQ is a multi-disciplinary effort campaign with multi-agency collaborations to study
complex fire systems. Research platforms were heavily instrumented with in-situ and remote-
sensing devices to allow for exhaustive characterization of gases and aerosols, optical properties,
wind fields, fire radiative power, and more. Ground-based examinations of fuels and burned
areas permitted clearer connections between atmospheric pollutants and their sources. Modeling
efforts were used during the campaign to predict transport and study emissions and downwind
plume transformations.

The results presented here are based upon CO andO3 retrievals from NAST–I measurements.
The NAST–I instrument and its retrieval algorithms are described elsewhere.10–19 The western
portion of the FIREX–AQ campaign domain (August 5, 2019, to August 21, 2019) covers 14
large wildfires fueled by grass, woodland, and scrub.20 Fire-induced CO plumes observed by
NAST–I during the FIREX–AQ have been analyzed and reported.16 For this study of wildfire
plume age, we chose the ER–2 sorties over the William Flats fire and the extended downwind
area from August 7, 2019, as the ER-2 sorties have ∼450-km downwind flight leg segments. The
William Flats fire was caused by lightning on August 2, 2019. It covered ∼100 km2 and was
located about 11-km southeast of Keller, Washington. The ER–2 flew from west (−120° lon-
gitude) to east (−113° longitude) and then back west at a near-constant latitude, passing over
the fire location (48.0° latitude, −118.5° longitude) and the extended downwind area to detect
fire-induced gas emissions and characterize their subsequent evolution. A large downwind area
covered by the ER–2 flight makes an excellent naturally occurring experiment to study fresh and
aged plumes.
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Geophysical parameters such as temperature, moisture, and CO and O3 profiles are retrieved
from NAST–I measured spectral radiances. The NAST–I retrieval algorithm was developed,
tested, improved, and validated.13,14,17 The NAST–I trace gas (CO and O3) retrieval algorithm
was also developed18 and later improved by implementation of a surface emissivity retrieval.19

During the FIREX–AQ field campaign, CO retrievals are validated using in-situ measurements
from the NASA DC–8 aircraft.16 There are two O3 in-situ sensors flying on the DC-8
aircraft: one is the NOAA nitrogen oxides and ozone (NOyO3) 4-channel chemiluminescence
instrument21 and the other is the rapid ozone experiment (ROZE).22 The nature of O3 (e.g., its
lifetime and photochemical reactions) and its impact on the atmosphere from wildfires is not as
obvious as that of CO. O3 is relatively stable in comparison with fire-induced CO, which makes
it a bit easier for inter-comparison between NAST–I remotely sensed and in-situ measured
ozone. A few DC–8 sorties were spatially coincident with the ER–2 sorties at the same fire
locations, but, in general, they had lag times of a few hours. There was one exception wherein
both spatial and temporal coincidence was achieved between the two aircraft, specifically, on
August 6, 2019.16 Here, we use the 60-s merged data from DC–8 measurements available from
the FIREX–AQ database23 to compare with NAST–I O3 retrievals. An inter-comparison between
ER–2 NAST–I O3 and DC–8 in-situ O3 is made in the vicinity of the William Flats fire location
from data collected on August 6, 2018, to August 8, 2019. Figure 1(a) plots the NAST–I O3 (in
black open circles) and in-situ O3 data (the mean of ROZE and NOyO3 measurements, in black
asterisks) with a coincidence spatial-criteria of jΔðlatitudeÞj < 0.05° and jΔðlongitudeÞj < 0.05°
and temporal-criteria of jΔðUTCÞj < 1 h for August 6, 2019. The NAST–I O3 profile is inter-
polated to DC–8 in-situ altitude. Figure 1(b) shows the difference between NAST–I and in-situ
O3 plotted in Fig. 1(a). Similar data from August 7 and August 8, 2019, are also plotted (in red
and blue symbols, respectively) with a relatively larger temporal-criteria of jΔUTCj as shown in
Fig. 1(c). Overall, from the data shown in Fig. 1, the mean error (bias) and standard deviation
error (STDE) between NAST–I retrievals and in-situ measurements are 7.55 (ppbv) and
10.85 (ppbv), respectively. Reasonable agreement between the ER–2 NAST–I and DC–8 in-situ
O3 measurements is achieved with some differences due to their spatial and temporal mis-
matches. However, it is noticed that NAST–I O3 starts to deviate from in-situ measurements
at an altitude of ≤3 km. This is believed to be a consequence of the expected lower ozone
retrieval sensitivity in the NAST–I passive infrared measurements at an altitude region below
3 km. However, the uncertainty of ΔO3 is relatively small compared with that of O3 itself as the
retrieval uncertainties of the polluted and clean background O3 regions are similar. From this

Fig. 1 NAST–I O3 retrieval evaluation with in-situ measurements near the William Flats fire loca-
tion from August 6, 2019, to August 8, 2019, in black, red, and blue, respectively (see text).
(a) NAST–I retrieved and in-situ measured O3; (b) the difference between NAST–I and in-situ
O3; and (c) the UTC difference between NAST–I and in-situ O3 measurements.
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evaluation, we believe that NAST–I O3 retrievals are reasonably good at the altitude of 3 km and
above and can be used together with CO retrievals to estimate the age of wildfire-induced plumes
as presented in the following section.

The William Flats fire progression and CO plume evolution during August 6, 2019, to
August 8, 2019, were observed by multiple airborne sensors including NAST–I.16 NAST–I
CO retrieval uncertainty has been evaluated with the co-incident in-situmeasurements and found
to have a bias of ∼8 ppbv and STDE of ∼28 ppbv.16 The NAST–I measurements provide 3D
distribution of temperature, water vapor, CO, and O3. For the case study here, the ER–2 sorties
went over the William Flats fire and the extended downwind area twice. NAST–I retrieved cross
sections in nadir view are plotted in Fig. 2 for one sortie (from west to east); the retrievals from
the return sortie are almost identical. Moisture layers are shown in relative humidity (RH) with
less saturation (<100%), indicating clear-sky conditions in the observations. CO plumes in the
downwind area are evidently clear. The O3, plotted in a logarithmic scale, illustrates its small
variation in free troposphere from the ground level up and its enhancement over the fire location
(−118.5° longitude).

Fire-induced plumes contain information on chemical gaseous photochemical reaction and
production; it is essential to know the plume’s evolution and age to better understand impacts to
air quality, weather, and climate. Fire plume age has been widely measured and studied by
numerous researchers. Observations of ΔO3∕ΔCO due to wildfires by biome and plume age
were summarized by Jaffe and Wigder.6 Many factors contribute to O3 production within wild-
fire plumes. In general, Jaffe and Wigder found a positive relationship between the ΔO3∕ΔCO
ratio and plume age. Here, we assume this relationship is a linear T ¼ αRþ β, where T is plume
age in hours and R is ΔO3∕ΔCO ratio. α and β are the slope and intercept, respectively. A fitting
relationship is obtained from Table 1 of Jaffe and Wigder.6 For boreal and temperate regions
(BTR), α ¼ 327.2 and β ¼ 89.4, whereas for the tropical and subtropical regions (TSR),
α ¼ 215.8 and β ¼ 3.1. The ΔO3∕ΔCO ratio increases as the plume ages, and it ages relatively

Fig. 2 NAST–I retrieval cross sections in nadir view for (a) temperature (K); (b) RH (%);
(c) CO (ppbv); and (d) O3 (ppbv) in logarithmic scale.
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slower in tropical and equatorial regions as more O3 production is expected from more NOx

emissions per unit of fuel consumed.6 Based upon this assessment, our plume age estimation
methodology relies on ΔO3∕ΔCO ratios within the plumes.

Within fire-induced CO plumes, we assume that CO concentrations are greater than 135 ppbv.
Subtracting the background estimates, ΔO3 and ΔCO are calculated using NAST–I retrieved O3

and CO. O3 background is assumed to be the average of its regional climatology, which is from a
global climatology database that consists of 15,150 profiles obtained from the extended SeeBor
database of the University of Wisconsin–Madison23,24 and NAST–I retrieval mean, whereas CO
background is assumed to be its regional climatology. 3D distributions of ΔO3 and ΔCO within
the plumes (where CO > 135 ppbv) are plotted in Figs. 3(a) and 3(b), respectively, along the
longitude with a color distribution in altitude. It is noted that elevated O3 spans at least 26 km
near the fire location (−118.5° longitude) and covers an area of 531 km2. It is worth mentioning
that ΔO3 and ΔCO plotted in Fig. 3 are estimations as the O3 and CO background within the
plumes is not precisely known but is estimated to the best of our knowledge and assumed to be
the same throughout the local region.

3 Results and Discussion

TheΔO3∕ΔCO ratio is estimated from retrievals using NAST–I flight observations and is plotted
in Fig. 4(a). CO plume age can be simply projected from wildfire ΔO3∕ΔCO. For the William
Flats fire location (48° latitude), a linear combination of 55% BTR and 45% TSR coefficients are
used to calculate the plume age that would reflect a near fresh plume at the fire location.
Estimated plume age is plotted in Fig. 4(b). For plumes at a lower altitude (i.e., 4 km and below),
their ages increased as the plumes moved away from the fire location downwind and merged
with aged plumes (∼60 to 100 h), whereas other aged plumes were sitting at a higher altitude
(4 km and above).

Figure 5(a) plots the plume age along the longitude with error bars indicating its variation
over altitude and longitude. Fresh plumes were observed to be closer to the fire location, whereas
aged plumes were in the downwind regions as expected. Figures 5(b)–5(c) plots the mean plume
age against the altitude with an error bar indicating its variation over longitude and latitude. The
ages depend on the distance (e.g., longitude) from the fire location. Figure 5(b) covers all data
shown in Fig. 5(a); Figs. 5(c) and 5(d) have data plotted with longitude that is < −117° and
> −117°, respectively. Near the fire location, shown in Fig. 5(c), fresh plumes are at a lower
altitude, and plume ages increase as altitude increases. As the plumes move further downwind, as
shown in Fig. 5(d), fresh and aged plumes were mixed along the altitudes with a near constant
mean plume age of ∼50 h, but with a large variation (i.e., a large standard deviation) indicated

Fig. 3 (a) ΔO3 and (b) ΔCO distribution within the fire-induced plumes.
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by the error bars (reduced by a factor of 5 for clarity) in the altitude region of∼3.5 to 7 km, where
a greater mixture of fresh and aged plumes co-exists. In general, as shown in Fig. 4(b), fresh
plumes were at a lower altitude, whereas aged plumes were found in the upper regions. Finally,
the distributions of enhanced CO column density from the fire plume and the vertical mean CO
plume age (VMCOPA) are plotted in Figs. 6(a) and 6(b), respectively. It is worth noting that
there are two flight tracks (two legs) back and forth with time evolution on top of each other; only

Fig. 5 (a) Plume age distribution along the longitude. Plume age distribution along the altitude:
(b) all data shown from (a); (c) data from longitude < −117° (near the fire location); and (d) data
from longitude > −117° (farther away from the fire location).

Fig. 4 (a) ΔO3∕ΔCO distribution along the longitude within the fire-induced plumes and
(b) estimated plume age distribution.
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the first leg is plotted in Fig. 6 for clarity. Comparing CO column density and its vertical mean
CO plume age, a large amount of relatively fresh CO plumes was near the fire location and aged
CO plumes was transported further downwind and/or to the upper regions.

The William Flats fire started on August 2, 2019, and the oldest plumes could be 4 to 5 days
old. The plume ages could be from mixed plumes (or effective plumes) as indicated in Figs 4-6;
therefore, in the area farthest away from the fire location, they could be somewhat <5 days old in
our estimations. Nevertheless, the plume age distributions, both horizontally and vertically
(shown in Figs. 5-6), make sense for the way plumes are transported and aged. The error or
uncertainty of plume age derived here is largely due to (1) O3 and CO retrieval error, especially
at lower altitudes (3 km and below) as retrieval sensitivity decreased; (2) the uncertainty from
estimated CO andO3 background within the plume; (3) the limited data available for deriving the
relationship between the plume age and ΔO3 to ΔCO ratio and a large data scattering and uncer-
tainty in the dataset;6 (4) a linear fitting relationship between the plume age and ΔO3∕ΔCO ratio
may not be the best representation; and (5) mixed (or effective) plumes being assessed possibly
contain contributions from multiple fire sources, especially in locations further away from the
primary fire location.

Currently these error sources are not completely quantified; therefore, the plume age pre-
sented in this letter study is only an estimation. Regardless, it is critically important even though
it may lack some quantitative accuracy because it nicely demonstrates the ability to characterize
wildfire plumes and estimate their age from the perspective of an advanced ultraspectral infrared
remote sounder. CO and O3 retrievals are the mean over the IFOV with a vertical column res-
olution. The plume that we dealt with is an effective plume or a volume mean of mixed plumes.
The plume age presented herein is also an effective mean plume age in the NAST–I sensor IFOV,
which can be different from in-situ measurements.

It is worth mentioning that the North Hills fire, started on July 26, 2019, was located at about
5 km northwest of Lake Helena, Montana (46.8° latitude, −112° longitude). It covered ∼20 km2.
CO plumes from the North Hills fire are unlikely but could contribute to the data presented here
at the locations near the western (possibly upwind) areas of the North Hills fire location.

4 Summary and Concluding Remarks

The FIREX–AQ field campaign with multiple aircraft in-situ and remotely sensed observations
provides characterization of distributions of chemical species induced by wildfire emissions and
subsequent evolution. This unique dataset is very much desirable in validating NAST–I O3 and
CO retrievals and illustrating the benefits of such data for wildfire characterization. The wildfire

Fig. 6 Distribution of (a) CO column density and (b) VMCOPA.

Zhou et al.: Estimation of fire-induced CO plume age from NAST–I during the FIREX-AQ field campaign

Journal of Applied Remote Sensing 034522-7 Jul–Sep 2022 • Vol. 16(3)



case of Williams Flats from the FIREX–AQ experiment reported herein is used to demonstrate
a fire-induced plume age estimation approach. Several major summary items and conclusions
can be obtained from this work. (1) NAST–I remotely sensed O3 is evaluated by favorable inter-
comparisons with the in-situ O3 measurements, which show a positive agreement (shown in
Fig. 1). (2) Small but significant enhanced O3 production near the William Flats wildfire location
is observed by NAST–I. (3) O3 and CO productions impacted by the wildfire are estimated
within the fire-induced plume. (4) Plume age is estimated using NAST–I observed ΔO3∕ΔCO
ratios and a linear fitting relationship from previous observations of wildfireΔO3∕ΔCO ratios by
biome and plume age.6 (5) Plume age distribution both horizontally and vertically indicates the
plume ages as it moves away from the fire location (for William Flats Fire case).

It was reported earlier that first-of-a-kind wildfire-induced plume measurements were
obtained by the NAST–I ultraspectral remote sensor on board the ER–2 suborbital aircraft,
which shows the intensity and size of wildfire plumes in a high-spatial-resolution of 2.6 km.
Now, in the present study, the plume age estimation in a 3D high-spatial-resolution adds critical
temporal information of the fire-induced plume, demonstrating the capability of an ultraspectral
remote sensor such as NAST–I with a higher spectral and spatial resolution to monitor CO
and O3 and its advantage of giving broader spatial and temporal assessment by rapidly cover-
ing a large field of observation. This work demonstrates 3D plume age estimation and
advances our measurement ability to observe fire-induced plumes and characterize their evo-
lution and age.

NAST–I was successfully operated during all ER–2 flights of the FIREX–AQ experiment
(a total of 11 flights and 50+ h of science data collected). NAST–I retrievals (e.g., atmospheric
temperature, relative humidity, CO, and O3 profiles, also surface skin temperature), together
with experiment data from other satellite/aircraft/ground measurements and analysis from the
FIREX–AQ campaign, are available25 for the science community to study wildfire-related topics
as described by the overarching objective of the FIREX–AQ experiment8 and beyond.
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