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Abstract. Generation and manipulation of digital images based on deep learning (DL) are
receiving increasing attention for both benign and malevolent uses. As the importance of satellite
imagery is increasing, DL has started being used also for the generation of synthetic satellite
images. However, the direct use of techniques developed for computer vision applications is
not possible, due to the different nature of satellite images. The goal of our work is to describe
a number of methods to generate manipulated and synthetic satellite images. To be specific, we
focus on two different types of manipulations: full image modification and local splicing. In the
former case, we rely on generative adversarial networks commonly used for style transfer appli-
cations, adapting them to implement two different kinds of transfer: (i) land cover transfer,
aiming at modifying the image content from vegetation to barren and vice versa and (ii) season
transfer, aiming at modifying the image content from winter to summer and vice versa. With
regard to local splicing, we present two different architectures. The first one uses image gen-
erative pretrained transformer and is trained on pixel sequences in order to predict pixels in
semantically consistent regions identified using watershed segmentation. The second technique
uses a vision transformer operating on image patches rather than on a pixel by pixel basis. We use
the trained vision transformer to generate synthetic image segments and splice them into a
selected region of the to-be-manipulated image. All the proposed methods generate highly real-
istic, synthetic, and satellite images. Among the possible applications of the proposed tech-
niques, we mention the generation of proper datasets for the evaluation and training of tools
for the analysis of satellite images. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part
requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.16.046504]
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1 Introduction

Manipulation and generation of synthetic images by means of deep learning (DL) architectures
are receiving increasing attention due to the demand of large labeled datasets for artificial
intelligence (AI) applications.1,2 The usage of synthetically generated images for the entertain-
ment industry and even for malevolent disinformation campaigns is also growing. Moreover,
satellite images are receiving increasing attention in several application areas including meteoro-
logical forecasts and the monitoring and detection of natural disasters. As a result, the number of
commercial satellites is constantly growing and the accessibility of imagery is increasing on a
daily basis. With the application of AI tools to the analysis and processing of satellite images and
the consequent necessity of gathering adequate amounts of labeled data for training, it is natural
that the quest for tools capable of generating synthetic data also applies to this kind of image.3–5
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The malevolent uses of synthetic and manipulated satellite images are also possible. The devel-
opment of tools for the detection and localization of manipulated satellite images6–11 also
requires the availability of adequate training and test datasets. The goal of this paper is to
describe a number of methods to generate globally and locally manipulated satellite images.

While deep neural networks have been successfully applied to the generation and tampering
of natural images and multimedia content, their use to generate synthetic satellite images has
received limited attention. In addition, the tools developed for media applications cannot be used
directly to generate synthetic satellite images, due to the different nature of such images in terms
of semantic content, number of bands, bit, and spatial resolution. In this paper, we present a
number of DL architectures for the generation of synthetic and manipulated satellite images,
focusing on two different kinds of manipulations: full image modification and local splicing.
We demonstrate the validity of the proposed methods using Sentinel-2 images.12

Generative adversarial networks (GANs) are popular DL architectures widely used for both
synthetic image generation13 and image style transfer.14 In this paper, we use them for the global
manipulation of satellite images. In particular, we use them for transferring the style of satellite
images in such a way to change their overall content and semantic meaning. In contrast, we do
not report any efforts to generate satellite images from scratch (as done, for example, in Ref. 15).
To be specific, we apply two different kinds of image style transfer. The first one, referred to as
land cover transfer, aims at changing the land cover of the manipulated images from vegetation
to barren and vice versa. To do so, we rely on a properly trained version of the cycleGAN
architecture.16 The goal of the second global transformation is season transfer, whereby summer
satellite images are transformed into winter ones and vice versa. For such transformation, we use
the pix2pix GAN architecture.14 The final goal of these transformations is to obtain fully
synthetic images that can be used to construct large labeled datasets.

With regard to local tampering, we present two types of transformer-based image generation
techniques.17 In particular, we generate the manipulated images by inserting synthetic splices
into irregular regions of the target image, making sure that the spliced boundaries are not visible.
Transformers were initially used for natural language processing applications.18 However, in the
last few years, they were also used to process still images.17,19 The first architecture we present is
the image generative pretrained transformer (iGPT),19 which is an autoregressive network trained
to predict pixels without observing the entire region of the 2D input image. The iGPT is trained
to generate the missing part of a satellite image from its neighboring pixels. In this way, parts of
the image can be removed without introducing noticeable artifacts. The second method is based
on a vision transformer, originally developed for image classification.17 We use the vision trans-
former to create synthetic regions (splices) of an image by modifying the output of the last layer
of the transformer. The final goal of the local image manipulation architectures is the creation of
a large labeled dataset of images with synthetically generated splices.

The remainder of this paper is organized as follows. In Sec. 2, we provide a brief review of
the state-of-the art of satellite images generation and manipulation using DL networks. In Sec. 3,
we list the datasets used throughout our work. Then in Sec. 4, we describe the architectures for
the generation of synthetic manipulated images. In Sec. 5, we provide some examples of the
images produced by the proposed architectures. Finally, in Sec. 6, we summarize the results
of our work and make some final remarks.

2 Relevant Work

GAN architectures have been successfully used to generate face images with an extremely high
level of realism.20–22 Lately, they have also been used to generate synthetic images with nonfacial
content.23 Even more recently, these techniques have started being used to generate synthetic
remote sensing images. In Ref. 15, a progressive GAN20 was trained on all 180k samples of
SEN12MS dataset24 to generate 13-bands images that imitate Sentinel-2 level-1C products.25

GANs have also been used to generate different types of satellite images that are correlated with
the input images. For example, Fuentes Reyes et al.3 used a GAN to generate optical images
starting from synthetic aperture radar (SAR) images. They did so by training a cycleGAN archi-
tecture with 512 × 512 patches of SAR images as input (domain A) and optical images as a
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reference (domain B). They constrained the output of the network to be a gray-scale image
similar to SAR images. In addition to synthesizing fake images from scratch and generating
different types of data, several papers have used GANs for image quality improvement, notice-
ably cloud removal,26–28 and sharpening.29–32 A pix2pix architecture was used in Ref. 5 to gen-
erate satellite images starting from 256 × 256 historical maps and RGB optical satellite reference
images.

Despite the increasing interest in the use of GANs for satellite images, only a few works have
used GANs to change the semantic content of existing images, which is the goal of this paper. To
the best of our knowledge, the only papers dealing with this issue are Refs. 15, 33, and 34. Abady
et al.15 proposed an image-to-image translation approach to change the land-cover of a satellite
image. Specifically, a NICE GAN35 is applied to achieve land cover transfer on four-band [RGB
and near-infrared (NIR) bands] images of 480 × 480 resolution. The land cover transfer regards
the transformation of vegetation terrains to barren and vice versa. A similar task is addressed in
Ref. 33 where the authors exploit a CycleGAN architecture to translate 10 bands of a Sentinel-2
level-1C image, namely the 10- and 20-m bands, from barren to vegetation and vice versa.
Finally, in Ref. 34, a method is presented for the creation of synthetic images having the urban
structure of a given city (i.e., Tacoma in Washington, USA) but with the landscape features of
another city (i.e., Seattle in Washington, USA and Beijing, China). A cycleGAN architecture is
used to transfer the style of cartoDB basemap to satellite images and vice versa. The cycleGAN
model is trained on a specific city B to generate simulated satellite images from the basemap of
another city A.

The techniques for global manipulations proposed in this paper focus on land-cover and sea-
son transfer. With regard to land cover transfer, the method we propose is a highly improved
version of the technique described in Ref. 15. The new approach is based on CycleGAN instead
of NICE GAN and produces transferred images with very good quality in both directions
(vegetation to barren and vice versa). In Ref. 15, instead, the transfer was successful only in one
direction (vegetation to barren), whereas in the other direction (barren to vegetation,) the quality
of the transferred images was poor.15 As to season transfer, this is a new kind of manipulation that
has never been addressed before. In particular, we propose an architecture whose application
transforms a satellite image taken in the winter (summer) into its summer (winter) counterpart.

With regard to local splicing, to the best of our knowledge, no work has been proposed in the
literature performing local tampering of remote sensing images using generative models.
Therefore, our paper represents a first attempt in this direction.

3 Datasets

In this section, we describe the datasets we have used in our experiments to demonstrate
the validity of the techniques we have developed. The datasets have been used to train the
architectures proposed in this paper and to assess their performance. All the datasets are obtained
starting from Sentinel-2 products;12 however, our methods can also be used on imagery
from other satellites, we have chosen Sentinel-2 images because of their availability for research
goals.

For global manipulations, we have used Sentinel-2 level-1C images, whereas for local manip-
ulations, we have used both Sentinel-2 level-1C images and Sentinel-2 level-2A images.
Sentinel-2 level-1C images consist of 13 bands, with band 2 representing the green channel,
band 3 the blue channel, and band 4 the red channel. Band 8 is one of the NIR channels.
Bands 2 (green), 3 (blue), 4 (red), and 8 (NIR) have a spatial resolution of 10 m, with size
10;980 × 10;980. Other six bands (bands 5, 6, 7, 8a, 11, and 12) have a spatial resolution
of 20 m, for a size of 5490 × 5490 pixels. Finally, bands 1, 9, and 10 have a spatial resolution
of 60 m, with size equal to 1830 × 1830. Sentinel-2 level-2A is the bottom-of-atmosphere prod-
uct obtained by applying atmospheric correction to top-of-atmosphere level-1C products. Its
bands are similar to those of the level-1C products, except for band 10, which is not present.
All the Sentinel-2 level-1C images were downloaded directly from the ESA Copernicus hub,36

whereas Sentinel-2 level-2A images were taken from the dataset SEN12MS.24 In Table 1, we
summarize the datasets that we have used in our research.
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3.1 Alps Dataset

We designed the Alps dataset to train and test the architecture for the season transfer manipu-
lation. The alpine area, in fact, is characterized by marked differences between winter and
summer, with winter images largely covered by snow, and summer images containing large areas
of green vegetation. For this dataset, we only selected the RGB and NIR bands, with ground
sampling distance (GSD) equal to 10 m, for a total size of 10;980 × 10;980 resolution and 16 bits
per pixel. We collected images representing exactly the same area taken at two different months,
each month representing a different season. In this way, in addition to using the images for
training the season transfer architecture, we also have a way to compare the results of the season
transfer with ground-truth images. In particular, we selected images taken in June 2019 for the
summer dataset and in December 2019 for the winter dataset.

The description of the procedure we followed to build the dataset is described in the follow-
ing. To start, we selected only images with limited cloud coverage. Since it was not possible to
get only images with 0% cloud coverage, we limited the search to images with a cloud coverage
lower than 9%.We extracted the bands of interest (RGB and NIR) from the downloaded products
as jp2000 images. We used the gdal software library37 for reading and writing raster and vector
geospatial data formats. Specifically, we used the gdal retile command to tile the downloaded
images from their initial size into several 512 × 512 images. Then we removed the edge tiles.
Finally, we paired the images of areas existing in both the winter and summer domains. As a
result, we built a dataset of 3936 pairs of images with 512 × 512 resolution. In Fig. 1, we show
the RGB version of some sample images of the Alps dataset.

3.2 Scandinavian Dataset

To validate the effectiveness of the season transfer architecture on different kinds of landscapes,
we built another dataset with marked differences between winter and summer. The dataset
includes images from Scandinavia and was built similarly to the Alps dataset. In this case, the
selected date range includes June 2020 for the summer and February 2020 for the winter. For
both domains, we selected only images with 0% cloud coverage. The final dataset consists of
9000 paired images of size 512 × 512. Figure 1 shows some RGB examples of the images from
the Scandinavian dataset.

3.3 Land Cover Datasets

The second kind of global manipulation we have considered aims at transforming barren covers
into vegetation areas and vice versa. For this reason, we created the land cover dataset by select-
ing images, in which one of the two types of covers is predominant with respect to the other.
To do so, we first selected the areas of interest based on the statistics provided by the organization
for economic co-operation and development.38 With regard to the areas with a high percentage

Table 1 Datasets used for our experiments.

Dataset Image size

Radiometric
resolution

(bits) Bands Dataset size Task

Alps 512 × 512 16 4 3936 pairs Season transfer

Scandinavia 512 × 512 16 4 9000 pairs Season transfer

Land cover 512 × 512 16 4 20,000 Land cover transfer

SEN12MS 256 × 256 16 3 120,000 iGPT and vision transformer
training

World 512 × 512 16 3 285,768 iGPT and vision transformer
splice insertion
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of vegetation, we extracted images from Congo, Salvador, Montenegro, Gabon, and Guyana.
The cloud coverage was set to 0%, and the range of dates spanned from June 2019 till
December 2019. For the barren domain, we selected the areas of interest in South and
Central America. For both domains, we used a linear discriminant analysis classifier39 to make
sure that after cropping the images to 512 × 512 patches, they contain, respectively, a great per-
centage of vegetation and barren soil. For each domain, we collected 10,000 images. For the
vegetation domain, the average percentage of vegetation pixels in an image is 98% with a maxi-
mum of 100% and a minimum of 60%. For the barren domain, the average percentage of barren
pixels in an image is 82% with a maximum of 100% and a minimum of 63%. In Fig. 1, we show
some RGB examples for the two different domains.

3.4 SEN12MS

The SEN12MS24 dataset was created to provide a large-scale satellite dataset for developing
DL-based methods. As opposed to the previous datasets, SEN12MS has a larger variety of
images regarding spatial coverage, diversity, and number of available samples. The dataset con-
tains 180,662 triplets of multispectral patches, dual-pol SAR image patches, and MODIS land
cover maps collected from Sentinel-1 and Sentinel-2 satellite imagery. The images span all sea-
sons with an approximately equal number of images captured during winter, spring, summer, and
fall. The images’ locations vary with respect to sea level elevation, climate, latitude, and urbani-
zation level. Each patch has a resolution of 256 × 256 pixels and we only used the RGB channels
of the multispectral patches. In our experiments, we used images from Africa, Europe, Asia,
Australia, and South America, for a total of ∼120; 000 images. Figure 1 shows some RGB
images from SEN12MS.

3.5 World Dataset

Eventually, we collected images from various regions in the world by downloading them from
the Copernicus Hub to construct the world dataset. The images were captured in 2018 and have
an equal number of images across seasons. We only used the RGB bands, which are sampled at
10-m GSDwith image size equal to 10;980 × 10;980. The images can contain clouds up to 2% of
the total number of pixels. From these images, we extracted nonoverlapping patches of size
512 × 512. The world dataset contains 285,768 images. We used the world dataset images
to generate images containing spliced objects as described in the subsequent sections.
Figure 2 shows four examples of world dataset images.

Fig. 1 Example images from the datasets: (a) Alps pairs, (b) Scandinavian pairs, (c) land cover
images, and (d) SEN12MS images.
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4 DNN Models

In this section, we describe the architectures we used to create the synthetic images. We start with
the architectures for global manipulations followed by those targeting local manipulations.

4.1 Season Transfer

As we said, with regard to global manipulation, we considered two different objectives. The first
objective was to transfer images taken in the winter to their summer counterpart and vice versa.
Paired images, with synchronized input and ground truth images, are not difficult to get in this
case since the same location is usually available for download in both seasons. For this reason,
and since using paired images facilitates training, we used the pix2pix architecture.14 Pix2pix is a
variant of traditional GANs, where instead of generating an image from noise, a conditional
GAN (cGAN)40 is considered. The cGAN takes one image as input and translates it into an
image belonging to the target domain. The training workflow of the pix2pix is shown in
Fig. 3. The generator attempts to generate a winter image (x) starting from its summer counter-
part (x 0) and vice versa. The goal of the discriminator is similar to that of a classical GAN,
namely to judge if an image is a real or a synthetic one. As opposed to classical GANs, however,
the discriminator takes as input a pair of images, an original image from the source season, and
an image depicting the same area in the target season, the goal being to decide if the image of the
target season is real or fake. A model can be trained to transfer images in one direction only,

Generator (G)

Fake image x' Groundtruth image y

Discriminator (D)

Real(1)/Fake(0)

Input image x

Fig. 3 Pix2pix training workflow.

Fig. 2 Example of images from the world dataset.
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which is from winter to summer or from summer to winter, so to be able to apply bidirectional
transfers, we had to train two models.

4.1.1 Architecture

The generator part of the pix2pix season transfer architecture consists of 8 U-Net blocks with
skipped connections,41 and the input size of the first layer is 512 × 512 × 4. Each block is made
up of two convolutional layers, two batch normalization layers, a leaky ReLU activation function
layer with drop out 0.2, and an ReLU activation function layer with drop out 0.2. As for the
discriminator, we used seven convolutional layers, each followed by batch normalization and
leaky ReLU activation. The input of the discriminator is the input image x concatenated either
with the ground truth image y or the generated image x 0. Both the generator and the discriminator
have been trained using Adam optimization.42

The loss function used to train the pix2pix architecture is made up of two partial losses.
The first one is the adversarial binary cross entropy loss Ladv:

EQ-TARGET;temp:intralink-;e001;116;555Ladv ¼ Ex;y½log Dðx; yÞ� þ Ex½logð1 −Dðx; GðxÞÞÞ�; (1)

whereD represents the discriminator network,G represents the generator network, x is the to-be-
translated image, and y is the ground truth image of x in the target season. The second partial loss
aims at minimizing the L1 distance between the generated image (GðxÞ) and its ground truth
counterpart (y):

EQ-TARGET;temp:intralink-;e002;116;475L1 ¼ Ex;y½ky − GðxÞk�: (2)

The objective of the generator is to minimize a weighted combination of Ladv and L1, that is:

EQ-TARGET;temp:intralink-;e003;116;430min
G

Ladv þ λL1; (3)

where λ should be set to adjust the relative weights of the partial losses. Finally, the discrim-
inator’s objective is to distinguish real and synthetic images, that is to maximize Ladv.

4.1.2 Training

We trained the pix2pix architecture on the Alps and the Scandinavian datasets. Both datasets are
characterized by extensive snow coverage in the winter and large green vegetation areas in the
summer. The main difference between the datasets is that Alps images are mostly mountainous,
whereas the majority of the Scandinavian dataset consists of meadows. For the Scandinavian
dataset, 6000 images were used for training, 2000 for testing, and 1000 for validation. Although
for the Alps dataset, 2800 images were used for training, 787 images for testing, and 349 images
for validation. In total, we trained four models, corresponding to two different transfer directions
for each dataset. Training a model took about 4.5 days on one NVIDIA GeForce RTX 2070
with Max-Q Design. To create the season transferred images, the pix2pix model was, separately,
trained on the Alps and Scandinavian datasets. The optimization parameters selected for the
Adam optimizer were β1 ¼ 0.5 and β2 ¼ 0.999. We set the learning rate to 0.0001. The number
of selected filters is 64, and the slope of the leaky ReLU was set to 0.2. Each model was
trained for 200 epochs with a batch size equal to 1. The weight for the L1 loss function λ was
set to 100.

4.2 Land Cover Transfer

The second global manipulation we have considered is land cover transfer, whereby barren
images are transferred to vegetation images and vice versa. A noticeable difference with respect
to season transfer is that, in this case, we have no ground truth images since in most cases the
barren (res. vegetation) version of a vegetation (res. barren) image does not exist. This requires
that a different architecture and training strategy be used. In particular, we opted for the
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CycleGAN architecture,16 which, unlike pix2pix, does not require the availability of paired
images for training.

The CycleGAN architecture consists of two generators and two discriminators. Let us
assume that the goal of the CycleGAN is to transfer images from a domain A to a domain
B and vice versa. Each generator translates the images in one direction. Specifically, the first
generator transfers images from domain A to domain B, whereas the second generator trans-
forms the images in the opposite direction. In this way, each generator can act as an additional
constraint for the other. The basic idea behind CycleGAN is to enforce a cyclic consistency in
such a way that when the output of the first generator is used as an input for the second, the image
produced by the second generator should be as close as possible to the original input image
(thus avoiding the need for paired images belonging to the two domains). Note that, unlike with
pix2pix, it is not necessary to carry out two separate training for the two directions of the transfer
since the two generators that are part of cycleGAN architecture provide the models for the two
directions.

4.2.1 Architecture

The exact architecture we have used to implement the land cover cycleGAN is described in the
following. The generators are implemented by means of a residual network43 with six residual
blocks and skip connections. The input size we used is 512 × 512 × 4. Each residual block has a
convolutional layer, a batch normalization layer, and a leaky ReLU activation function layer.
Regarding the discriminator, we used seven convolutional layers, each followed by batch nor-
malization and a leaking ReLU activation. For both networks, Adam’s optimizer was used.
Figure 4 shows the different losses of a cycleGAN architecture. Training is obtained by finding
a good trade-off between three partial losses. The first partial loss is the typical adversarial GAN
cross entropy loss (Ladv) defined as

EQ-TARGET;temp:intralink-;e004;116;423Ladv ¼ Ev½ðDbðGv2bðvÞÞ − 1Þ2� þ Eb½ðDvðGb2vðbÞÞ − 1Þ2�; (4)

where Gv2b is the generator that translates the images from vegetation to barren, Gb2v is the
generator that transfers the images from barren to vegetation, Db and Dv are the discriminator
networks that classify images as real or fake for the barren and vegetation domains, respectively,
and b and v are generic barren and vegetation input images. The second loss is the cyclic con-
sistency loss defined by

EQ-TARGET;temp:intralink-;e005;116;331Lcycle ¼ Ev½kGb2vðGv2bðvÞÞ − vk� þ Eb½kGv2bðGb2vðbÞÞ − bk�; (5)

whose goal is to make sure that vegetation (res. barren) images that are translated to barren
(res. vegetation) and then back to vegetation (res. barren) are as close as possible to the original
input.

Finally, an extra constraint is added to ensure that when a generator is fed with an image
belonging to the output domain, it leaves the image as is since no transformation is actually
necessary. Such a goal is achieved by defining a third loss, namely the identity loss, as follows:

EQ-TARGET;temp:intralink-;e006;116;227Lidentity ¼ Ev½kGb2vðvÞ − vk� þ Eb½kGv2bðbÞ − bk�: (6)

The goal of the generators is to minimize an overall loss combining the three partial losses
described above:

EQ-TARGET;temp:intralink-;e007;116;170 min
Gv2b;Gb2v

α1Ladv þ α2Lcycle þ α3Lidentity; (7)

where α1, α2, and α3 are the weights of the adversarial, cycle, and identity losses, respectively. In
contrast, the discriminators aim at distinguishing between real and synthetic images, each in its
domain, a goal that is achieved by solving the following optimization problem:

EQ-TARGET;temp:intralink-;e008;116;97max
Dv;Db

Eb½ðDbðbÞ − 1Þ2� þ Ev½ðDbðGb2vðvÞÞÞ2� þ Ev½ðDvðvÞ − 1Þ2� þ Eb½ðDvðGv2bðbÞÞÞ2�: (8)
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4.2.2 Training

The dataset we used to train the cycleGAN architecture described in the previous section is the
land cover dataset with 8000 images from each domain used for training and 2000 images were
kept for testing. Training the model took about 10 days on one NVIDIAGeForce RTX 2070 with
Max-Q design GPU. For this task, the cycleGANmodel was trained for 200 epochs with an input
size of 512 × 512 × 4. For each network of the model, the Adam optimizer was used with β1 set
to 0.5, β2 to 0.999 and the learning rate set to 0.0001. The number of filters used is 32 and the
slope for the leaky ReLU was set to 0.2. The batch size was constrained to 1. The GAN adver-
sarial loss weight α1 was set to 1 and the cyclic consistency weight α2 was set to 5, whereas the
identity loss weight α3 was set to 3.

4.3 Splicing with iGPT

The next manipulation we considered is local splicing. We used iGPT to generate synthetic
image splices that then we inserted into images from the world dataset. The iGPT was trained
on the SEN12MS dataset. The goal in this case was to remove some parts of an image from the
world dataset and replace them with content generated by iGPT, by paying attention to enforce
the consistency of the spliced patch with the surrounding of the removed part and the rest of the
image. The overall splicing process is depicted in Fig. 5.

IGPT19 is a transformer-based unsupervised image classification and image generation
model. Early transformer-based models, such as BERT,44 RoBERTa,45 and T5,46 could be used
directly with 1D sequences in any form, but were not easily extendable to 2D data, such as

Generator Gv2b

Generator Gb2v

Discriminator Db

Discriminator Dv

Real(1)/Fake(0)

Real(1)/Fake(0)
Input vegetation image v

Input barren image b

Generated barren bF

Generated vegatation vF

Adversarial loss

Cyclic loss

Generator Gv2b

Generator Gb2v

Input vegetation image v

Input barren image b

Generated barren bF

Generated vegatation vF

Reconstructed barren

Reconstructed vegetation

Identity loss

Generator Gv2b

Generator Gb2v

Input vegetation image v

Input barren image b Identity barren

Identity vegetation

(a)

(b) (c)

Fig. 4 CycleGAN partial losses: (a) adversarial, (b) cyclic, and (c) identity losses.
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images. A model that is able to work with 2D data, namely the GPT-2 47 model, has been intro-
duced recently (a GPT-2 model trained on images is known as iGPT). To identify the spliced
areas, we apply watershed48 unsupervised segmentation to the images of the world dataset and
randomly select several of the largest segments as the regions where the splices generated by
iGPT had to be inserted. Then we use iGPT to generate the to-be-inserted splices based on the
mask given by the watershed segmentation.

4.3.1 Architecture

IGPT19 is very similar to the GPT-2.47 An important difference between the two architectures is
the activation function. Specifically, a quick Gaussian error linear unit (GELU) is used in iGPT,
instead of the GELU used in GPT-2. GELU combines some useful features of the most com-
monly used activation functions. It randomly multiplies its input by one and randomly sets some
of the activations to zero. It can be approximated by the following equation:

EQ-TARGET;temp:intralink-;e009;116;323GELUðxÞ ∼ 0.5xð1þ tanhð
ffiffiffiffiffiffiffiffi
2∕π

p
ðxþ 0.044715x3ÞÞÞ: (9)

Quick GELU is similar to GELU but with a lower computationally complexity, being defined as

EQ-TARGET;temp:intralink-;e010;116;278quick_GELUðxÞ ¼ x
1þ e−1.702x

: (10)

IGPT also differs from GPT 2 in the number of normalization layers, which is much lower for
iGPT, thus decreasing significantly the number of operations. The reader may refer to Ref. 19 for
more details. The input of GPT-2 is a sequence of pixels U ¼ x1; : : : ; xn. Although its objective
is to maximize the following likelihood:

EQ-TARGET;temp:intralink-;e011;116;190L1ðUÞ ¼
X

i

logPðxijxi−k; : : : ; xi−1;ΘÞ; (11)

where P is the conditional probability modeled by a neural network with parameters Θ, and k is
the size of the context window.

The transformer inside the iGPT creates a model of the probability density function of the
current pixel xi, given the previously observed pixels x1; : : : ; xi−1 as shown in the following
equation:

Fig. 5 Spliced images created using iGPT.

Abady et al.: Manipulation and generation of synthetic satellite images using deep learning models

Journal of Applied Remote Sensing 046504-10 Oct–Dec 2022 • Vol. 16(4)



EQ-TARGET;temp:intralink-;e012;116;417pðxÞ ¼
Yn

i¼1

pðxπi jxπi−k ; : : : ; xπi−1 ; θÞ; (12)

where in general, πi indicates a permutation of the pixel sequence. In our case, we simply let πi
be the identity permutation, that is πi ¼ i. 19 θ contains all the other parameters of the neural
network used during training. The 2D image is transformed into a 1D sequence by lexicographi-
cal ordering.

The input of the decoder part of the transformer is a sequence of discrete pixels x1; : : : ; xi−1,
and the output is a d-dimensional vector as shown in Fig. 6. The decoder is implemented by a
stack of L blocks, in which the l’th block produces an intermediate embedded vector hl1; : : : ; h

l
d.

IGPT uses the same formulation as GPT-2 for the transformer decoder block, in which we input
hl in the order seen in Eqs. (13)–(15) to obtain hlþ1:

EQ-TARGET;temp:intralink-;e013;116;268nl ¼ layer_normðhlÞ; (13)

EQ-TARGET;temp:intralink-;e014;116;224al ¼ hl þmultihead_attentionðnlÞ; (14)

EQ-TARGET;temp:intralink-;e015;116;201hlþ1 ¼ al þmlpðlayer_normðnlÞÞ: (15)

The final layer of the transformer decoder is followed by a normalization layer and projection
logits (real numbers that with unlimited range) as a parameter for the conditional probability
distributions of each sequence element. In the final step, the output vector is reshaped into a
2D image. In our implementation, we used eight layers to construct the iGPT with two heads,
we also set the embedded vector dimension to 16, as suggested in the original iGPT paper.19

4.3.2 Training

IGPT model was trained for 20,000 epochs using the SEN12MS dataset. We had to train the
model for a large number of epochs to generate realistic spliced objects. The validation loss was
decreasing throughout the entire training process. The size of the patches extracted from the

Fig. 6 Block diagram of iGPT.
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SEN12MS dataset was 28 × 28 × 3. At each iteration, we extracted one random patch for each
image. The model was trained using the negative log likelihood loss function:

EQ-TARGET;temp:intralink-;e016;116;711Lðx; yÞ ¼
XN

n¼1

− logðexn−ynÞ
N

; (16)

where xn is the predicted pixel value and yn is the target pixel value. The target pixel values are
the pixel values in the SEN12MS dataset.

For training, we used the Adam optimizer with β1 ¼ 0.5; β2 ¼ 0.999 and learning rate equal
to 0.003. β1 and β2 are the initial decay rates used to calculate the first and second moments of
the gradient. The batch size was set to 64. IGPTwas trained on the SEN12MS dataset described
in Sec. 3.4. Training went on for 4 months on one GPU. 6747 spliced images were generated in
∼3 weeks.

4.4 Splicing with Vision Transformer

The vision transformer17 was originally developed for image classification by replacing the con-
volution layers with a transformer model.49 Specifically, transformers tend to have inductive bias
when trained on large-scale datasets. The vision transformer aims at resolving this issue and
provides good results for image classification by scaling the dataset to a smaller size and reduc-
ing the amount of training data. In our work, we modified the vision transformer so to use it
for synthetic splice generation. In particular, we edited the last layers of the vision transformer,
so to generate an image instead of a classification score. The modified layer has a size of
3 × 256 × 256.

We use the modified vision transformer to generate synthetic image splices to be inserted into
images from the world dataset. The modified vision transformer was trained on the SEN12MS
dataset. The goal here is to remove some regions of an image from the world dataset and replace
them with content generated by the modified vision transformer. The content should be con-
sistent with the surrounding of the removed part and the rest of the image. Similar to iGPT,
we use watershed48 segmentation on images in the world dataset and randomly selected several
of the largest segments to insert the splices. The whole procedure is shown in Fig. 7.

4.4.1 Architecture

The vision transformer inputs are image patches as shown in Fig. 8. In our technique, the original
image size is 128 × 128, whereas the size of the patches inside the transformer is 64 × 64. Then

the dimensionality of the input image patches is reduced using a linear projection: Ti ¼ WÎi,

where W ∈ RD×N is a linear mapping function learned during training, Îi ∈ RN is the flattened

Fig. 7 Spliced images created using vision transformer.
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i’th image patch, and Ti ∈ RD is known as the i’th image token. Therefore, an image token is a
linear projection of the input patches.

The vision transformer incorporates a traditional transformer used on one-dimensional
sequences. The transformers use self-attention modules to incorporate long range information,
which can contain information about all the inputs,49 let us call these inputs “position-aware
tokens.” The position-aware-tokens indicate where the image patch is located in the input image.
The self-attention modules are invariant to the order of the position-aware tokens, so the order
with which we input the list of “position-aware tokens” into the transformer is irrelevant.
We create the position-aware tokens by concatenating the image token (input image patch
projection) and the positional embeddings. The positional embeddings incorporate positional
information for each different input image token.17 We created these positional embeddings
by numbering the order of the patches with 64 × 64 size. These positional embeddings, Pi ∈ RD

for i ∈ f0;1; : : : g, are used to add positional information about the input patches to the trans-
former. We input these position-aware tokens into the transformer to produce a “transformer
output.” We created the output image by reshaping the “transformer output” to the shape of
the original image.

4.4.2 Training

We trained the vision transformer with images from the SEN12MS dataset, segmented using the
watershed algorithm as shown in Figs. 7 and 8. The training loss is defined as the difference
between the reconstructed and the original SEN12MS images. The vision transformer was
trained for 4000 epochs on 128 × 128 × 3 patches extracted from the 124,511 images of the
SEN12MS dataset. For training, we used the Adam optimizer with β1 ¼ 0.5; β2 ¼ 0.999, and
learning rate equal to 3 × 10−6. The batch size was set to 1. The vision transformer incorporated a
Linformer.50 The Linformer reduces the memory used in the transformer self-attention module,
by reducing the space complexity. The Linformer we used has an internal dimension of 2048, its
sequence length is 65 with depth 12. The Linformer uses 1024 heads and introduces a low-rank
matrix to approximate the self-attention part in the transformer. In this way, the space and time
complexity of the model is reduced to OðnÞ. More detailed information about this architecture
can be found in the original Linformer publication.50 We used the trained vision transformer to
generate 285,768 spliced world images. The model was trained for 2 months on one GPU, and
the spliced images were generated in ∼2 weeks.

5 Results

In the following, we show some examples of global and local image manipulations generated
with the models described in the previous sections. For global manipulations, we used
γ-correction with γ set to 2 on the RGB bands of the images to visualize them properly since
otherwise they would be too dark for human inspection. In addition to γ correction, for the season
transfer task, we applied image stretching on the R, G, and B bands of each image. The original
images displayed in this section (without corrections) can be accessed in Ref. 51.

Fig. 8 Block diagram of the vision transformer.
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The quality of the season transferred images can be judged by comparing them with the
available ground truth. (Although comparing the transformed images with the ground truth
is a reasonable way to judge the quality of the transfer, it is worth reminding that no unique
ground truth exists for the season transfer, given that the same region may assume different
aspects in different days of the same season, or across different years.) For the land cover trans-
formation, we judge the quality of the produced images by means of an objective spectral mea-
sure such as the normalized difference vegetation index (NDVI)52 and classifying the image
pixels by means of a general purpose classifier.

5.1 Season Transfer

In Fig. 9, we show an example of season transfer for the Alps dataset. Real winter and real
summer images are shown in columns (a) and (c), respectively, whereas the synthetic generated
images are displayed in columns (b) and (d). We report the color image obtained by putting
together the RGB bands (first row) and the single-image bands (rows 2 to 5). As it can be seen,
the synthetic images produced by the pix2pix model approximate very well the real images, and
in any case, they provide a realistic view of the framed region in the target season. A similar
example for the Scandinavian dataset is shown in Fig. 10. Even in this case, the synthetic images
are very close to the real ones.

Band RGB

Band 1 (B)

Band 2 (G)

Band 3 (R)

Band 4 (NIR)
     Bands (a) (b) (c) (d)

Fig. 9 Alps season transfer example: (a) real winter, (b) generated winter, (c) real summer, and
(d) generated summer.
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5.2 Land Cover Transfer

In Fig. 11, we show an example of a land cover transfer from barren to vegetation and vice versa.
We notice that the generated vegetation bands are darker than the input barren images and con-
sistent with the real vegetation. In the same way, the generated barren image is lighter than the
vegetation input as it should be for a real barren terrain. To give an objective measure of the
effectiveness of the land cover transfer (in the absence of ground truth images), we utilized the
NDVI index that is usually adopted to estimate the vegetation content of satellite multispectral
images and defined as

EQ-TARGET;temp:intralink-;e017;116;186NDVI ¼ nir − red

nir þ red
; (17)

where nir is the near-infrared band (band 4 in our case) and red is the RED band (band 3). We
then used the NDVI index to classify each pixel into one of four classes.53 Specifically, pixels for
which the NDVI is lower than −0.1 are classified as water pixels, as barren when NDVI
∈ ½−0.1; 0.1�, low vegetation when NDVI ∈ ½0.1; 0.4�, and high vegetation when NDVI is larger
than 0.4. In Table 2, we report the result of the pixel classification into the above 4 classes
for 2000 real vegetation images, 2000 real barren images, 2000 synthetic barren images
(GAN barren), and 2000 synthetic vegetation images (GAN vegetation). We confirm that

Band RGB

Band 1 (B)

Band 2 (G)

Band 3 (R)

Band 4 (NIR)
     Bands (a) (b) (c) (d)

Fig. 10 Scandinavian season transfer example: (a) real winter, (b) generated winter, (c) real
summer, and (d) generated summer.
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Band RGB

Band 1 (B)

Band 2 (G)

Band 3 (R)

Band 4 (NIR)
     Bands (a) (b) (c) (d)

Fig. 11 Land cover transfer examples: (a) real barren, (b) generated vegetation, (c) real vegeta-
tion, and (d) generated barren.

Table 2 Percentage of pixels classified into four terrain classes
based on NDVI.

Dataset

Class

High
vegetation

(%)

Low
vegetation

(%)
Barren
(%)

Water
(%)

Real vegetation 77.87 21.81 0.29 0.01

GAN vegetation 91.8 6.7 1.1 0.3

Vegetation obtained with
the model in Ref. 15

68.2 22.3 8.3 1.1

Real barren 0 0 100 0

GAN barren 0 2 97.54 0.46

GAN barren obtained with
the model in Ref. 15

11.26 7.6 81.14 0
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the majority of the pixels of real vegetation images to the high vegetation class, whereas the
majority of the pixels of real barren images to the barren class. For the synthetic vegetation
images, most pixels are classified as high vegetation, even if no pixels of the input images belong
to such a class. As for the synthetic barren images, most pixels were classified as barren and a
few as low vegetation, even if the most input pixels belonged to the high vegetation class. In
addition, we compared the results we got with those obtained by applying the NICE GAN model

Fig. 12 Example images generated by the iGPT architecture: (a) the original world image, (b) the
spliced regions, and (c) the manipulated images.
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presented in Ref. 15. To do so, we applied the NICE GAN model to the same pristine images of
each class and then we computed the percentage of pixels classified into the four terrain classes
similarly to what we did for the GAN images generated by our model. The results show that in
the case of GAN vegetation, our model achieves a stronger transfer with only 1.1% of the pixels
classified as barren, whereas with15 8.3% of the pixels remained in the barren class. As for the
GAN barren, our model also shows a stronger transfer capability with more than 97% of the
pixels classified as barren, whereas by applying the model described in Ref. 15, a larger number
of pixels are still classified as vegetation.

5.3 IGPT

In Fig. 12, we show some images containing splices generated by the iGPT model. Figure 12(a)
shows the original images, (b) the replacement masks (spliced region), and (c) contains the
manipulated images. We can note that the model can generate splices, which blend well into
the images. The spliced images contain areas with different climates, vegetations, and urbani-
zation levels. For example, the top urban region in Fig. 13(a) has been synthetically generated,
whereas the bottom green vegetation part belongs to the original image. In the same figure, the
bottom vegetation part in Fig. 13(b) corresponds to a synthetic region, whereas the surrounding
barren pixels are part of the original image.

5.4 Vision Transformer

In Fig. 14, we show some examples of the spliced images generated by the vision transformer.
Figure 14(a) contains the original images, (b) contains the replacement masks (spliced region),
and (c) contains the manipulated images. We generated the spliced regions as in Sec. 5.3. As it
can be seen, the vision transformer generates realistic spliced regions. The spliced images con-
tain areas with a different climate including desert, Mediterranean, continental, tundra, and dif-
ferent levels of vegetation. In addition, the spliced regions blend well into the surrounding areas.
For example, the bottom forest area in Fig. 15(a) has been synthetically generated, whereas all
the other green vegetation parts belong to the original image. In the same figure, the top desert
part in Fig. 15(b) corresponds to a synthetic region, whereas the other surrounding desert pixels
are original.

We noticed several differences in the splices generated by iGPTand vision transformer. iGPT
tends to generated more diverse objects. For example, in Fig. 13(a), the original image
was mainly vegetation and rural areas while the generated spliced region is an urban area.
IGPT was able to generate splices with a pixel level detail for varying spliced regions, however,

Fig. 13 (a), (b) Generated image parts using iGPT.
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it took a long time (5 to 30 min) to generate these splices. The vision transformer tends to
generate splices very similar to their surroundings. For example, in Fig. 15(a), the original image
was a rural housing area, whereas the generated splices were vegetation, which is consistent with
the rest of the image that is mainly occupied by vegetation. The vision transformer sometime had
some difficulties to generate very detailed spliced regions, however, creating a spliced image
took several seconds in contrast to the iGPT long generation time.

Fig. 14 Examples of images generated by the vision transformer architecture: (a) the original
world image, (b) the spliced regions, and (c) the manipulated images.
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6 Conclusion

DL generative techniques are able to generate realistic images that can even deceive human
inspection. Although, so far, most attention has been given to the generation of face images,
we expect that the generation of synthetic satellite images will gain more and more interest
in the future. However, conventional techniques used to generate face images cannot be directly
applied to create synthetic satellite images, due to the particular nature of satellite multispectral
imagery. In this paper, we presented a number of DL architectures aiming at generating labeled
synthetically manipulated satellite images. We focused on two kinds of manipulations: full
image modification and local splicing. With regard to full image modification, we adapted two
GANs commonly used for style transfer applications, to implement two different kinds of trans-
fer: (i) land cover and (ii) season transfer. As to local manipulations, we presented two archi-
tectures for local splicing. All the proposed methods can generate highly realistic images,
opening the way for several uses across different application scenarios. As future work, we plan
to examine whether the synthetic images generated by our architectures can be distinguished
from real images by means of specific image forensic detectors.
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