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Abstract. The complex terrain, shallow snowpack, and cloudy conditions of the Tibetan Plateau
(TP) can greatly affect the reliability of different remote sensing (RS) data, and available station
data are scarce for simulating and validating the snow distribution. Aiming at these problems, we
design a synthesis method for simulating the snow distribution in the TP where the snow is
patchy and shallow in most regions. Different RS data are assimilated into the SnowModel,
using the ensemble Kalman filter method. The station observations are used for the validation
of assimilated snow depth. To avoid the scale effect during validation, we design a random sam-
pling comparison method by constructing a subjunctive region near each station. For years 2000
to 2008, the root-mean-square error of the assimilated results are in the range [0.002 m, 0.008 m],
and the range of Pearson product-moment correlation coefficients between the in situ observa-
tions and the assimilated results are in the range [0.61, 0.87]. The result suggests that the snow
depletion curve is the most important parameter for the simulation of the snow distribution in
ungauged regions, especially in the TP where the snow is patchy and shallow. © The Authors.
Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or repro-
duction of this work in whole or in part requires full attribution of the original publication, including its
DOI. [DOI: 10.1117/1.JRS.8.084696]
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1 Introduction

The Tibetan Plateau (TP) is the highest and most extensive highland in the world and has been
called “Third Pole” and “Asian water tower.”1 Snow in the TP plays an important role in the
hydrological cycle and in climate processes on regional and global scales. Snow is an important
water resource supply to adjacent rivers and basins, such as the Yellow River, the Yangtze River,
the Mekong Basin, the Brahmaputra Basin, and the Ganges Basin. It also has an important in-
fluence on the water budget of lake basins in the TP besides that of glaciers and precipitation.2,3

Snow cover in the TP heavily influences regional climate and global climate. Some studies have
demonstrated that the spring snow cover in the TP is closely associated with the East Asian
summer monsoon4–6 and is the most important predictor of the monsoon precipitation.7

However, the spatial and temporal distributions of snow are sensitive to climate change
in this region.8 The cryosphere in the TP has recently been undergoing rapid change, including
inconsistent snow cover change.1 Accurate estimation of snow cover extent and snowmelt
distribution is very valuable knowledge for the management of the hydrological cycle in
the TP.

In the previous studies, many different methods for monitoring and modeling snow distri-
bution have been used, including remote sensing (RS), distributed snow models, and synthesis
methods such as assimilation.
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1.1 Remotely Sensed Snow Distribution

Microwave snow depth (SD) and snow water equivalent (SWE) products have not been suffi-
ciently developed for monitoring snow cover in rugged mountainous regions.9,10 Especially
in regions of shallow snow in western China, the passive microwave algorithm with gradient
brightness temperature between 36.5 and 18.7 GHz has been shown to be of little value.11 Snow
products from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) overesti-
mated SWE in the TP according to the previous study.12

Visible and near-infrared (VNIR) RS data, especially snow cover fraction (SCF) data, are
more frequently used in the snow distribution simulation,13–15 owing to their high temporal
and spatial resolutions and accuracy for identification of snow areas. However, the main
disadvantage of the VNIR snow data is that they are influenced heavily by clouds.16

There are studies directly combining MODIS and AMSR-E data,17–19 that take advantage of
both the high spatial resolution of VNIR data and the cloud transparency of passive microwave
data.20 Some studies used both Terra and Aqua MODIS snow cover products to reproduce a new
composited snow cover dataset, with a user-defined cloud cover threshold.21

1.2 Simulation of the Snow Distribution Using RS Data

In some studies, RS data were used as a criteria for whether snow processes exist, such as in the
snow runoff model (SRM).22 In other studies, RS data were used to validate, calibrate, and adjust
the model output. They are usually used in physically based models in which the snow cover area
could not be regarded as direct input into the model.23 Some studies incorporated remotely
sensed SCF data with the simulated daily snowmelt to improve the accuracy of the simulated
distributed snowmelt.24 More generally, data assimilation (DA)—in which different RS data are
combined with the snow model—has proven to be the most efficient method for estimating the
snow distribution. The SCA/SCF and SD data could be used alone or combined in different
assimilation experiments.25

1.3 Snow Depletion Curve (SDC) and its Application to DA

The SDC, representing the functional relation between SCF and SD/SWE,26 has been widely
used to map SCF to SD in assimilation experiments.

Using the concept of the SDC, Clark et al.27 assimilated SCF information into a simplified
snowmelt scheme and obtained results with minor improvements in the accuracy of streamflow
simulations. Besides SCF, remotely sensed SWE data have also been jointly assimilated into
a snow model, yielding significantly improved root-mean-square error (RMSE) and correlation
values.28

At present, SCF is the most sufficient RS data used in the DA of snow in mountainous
regions with few meteorological stations. The key for DA using SCF data is the application
of the SDC. However, it is not easy to find a suitable SDC in ungauged regions because of
the absence of enough prior in situ observations, especially in the TP.

1.4 Challenges in Simulating the Snow Distribution in the TP

In the TP, it is difficult to simulate the snow distribution because of the many limitations, espe-
cially the scarcity of station observations. A viable method is to utilize RS data and an empirical
snow model. For example, Immerzeel et al.29 monitored the snow distribution using MODIS
snow products and an empirical degree-day method in Himalayan river basins.

The difficulties that should be accounted for in simulating snow distribution in the TP can be
summarized as follows:

1. In most regions of the TP, snow cover is very thin, patchy, and of short duration, with the
only few appreciable snow covers located in the peripheral mountains.30 Snow cover
changes rapidly with high irregularity. It is difficult to find a fixed or regular SDC
in this region.
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2. There are few meteorological stations for monitoring the snow status and changes.
Simulating the snow distribution is unreliable if it is only dependent on a few meteoro-
logical stations.

3. The accuracy of microwave data is significantly reduced due to the coarse resolution of
the imagery, the complex topography and underlying ground conditions. However,
a relative high spatial resolution is needed for simulating the snow distribution to account
for the great heterogeneity of snow cover in the plateau. The VNIR SCF data have
a reliable accuracy and high spatial and temporal resolutions, but they cannot describe
the SD information directly, and the availability of SCF data is hampered by large areas
of clouds.

Accounting for these problems, we present a synthesized scheme for the simulation of
the snow distribution in the TP. This scheme includes a combination method of remotely sensed
SCF and SD data. The reproduced SD distribution data are assimilated into a physically based
snow model, using a relevant SDC derived from reliable station observations.

2 Data and Methodology

In this section, we present a synthesis method for simulating the snow distribution in the TP.
Different RS data are assimilated into a physically based snow model. Considering the spatial
resolution of the meteorological data and computer runtime of the simulation, we chose 0.1 deg
as the basic minimum resolution for the combined SD dataset. The flow chart is illustrated
in Fig. 1.

In contrast to other similar research, we employ a special strategy in the simulation frame-
work by considering the regional features of the TP and assimilating a relatively reliable RS
dataset of SD distribution into the snow model. Different RS data are chosen based on
snow conditions. We investigated the cases in which SCF are greater than 50%. These cases
account for 82–92% in snow covered grids in different years in the TP. The statistics results
from station observations indicate the average SD in different snow seasons are in the range
[2 cm, 8 cm]. The investigation indicates the snow cover is patchy and shallow in most regions
of the TP. When snow is patchy and shallow in the simulation grid, SD is transferred from SCF
data by using the SDC method. When snow cover is dominant in the grid, we adopt the SD
combining the microwave remotely sensed SD data and VNIR SCF data. We chose a SCF thresh-
old of 50% as the criterion for which the method is adopted. The reason for using this criterion
is explained in Sec. 2.2. There are two different RS data sources for obtaining SD observations.
In our study, we chose the VNIR (MODIS) SCF dataset, and the microwave (AMSR-E and
SSM/I) SD dataset. We combine the AMSR-E, SSM/I data, and MODIS data and construct
a statistic relation between SCF and SD. The details are described in the following sections.

In the simulation framework, we need to include a physically based snow model, distributed
meteorological data, and an assimilation method. We choose SnowModel31 as the model
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Fig. 1 Flow chart of simulation of the snow distribution using different RS data.
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operator. Meteorological data are modeled by using the weather research and forecasting (WRF)
model. The combined SD dataset is assimilated into the snow model driven by the distributed
meteorological data, using the ensemble Kalman filter (EnKF) method.

2.1 Study Region and RS Data

The study region of the TP is illustrated in Fig. 2. There are 94 stations with SD observations
used in the study. Because of the data missing and short snow seasons in some regions of the TP,
some stations have few observations with SD greater than zero. All the observations from 94
stations are used to compare with the assimilated results.

In the study, we used the calibrated AMSR-E SD data from the long time series of passive
microwave satellite dataset in China, which is provided by the Environmental and Ecological
Science Data Center for West China, National Natural Science Foundation of China (http://
westdc.westgis.ac.cn). In this dataset, the brightness temperatures from different sensors
(SMMR for 1978 to 1987, SSM/I for 1987 to 2008, and AMSR-E for 2002 to 2010) were
cross-calibrated.32 SD data were retrieved using the modified Chang algorithm,33 which
is dynamically adjusted based on the seasonal variation of grain size and snow density.
It has been validated by considering the influences from vegetation, wet snow, precipitation,
cold desert, and frozen ground. The extent of the snow distribution from this dataset was
indirectly validated by MODIS snow cover products.12

The continuous SCF data with 500-m resolution were reproduced based on the cubic spline
interpolation algorithm, and the accuracy of this dataset has been demonstrated.34 The used
dataset for reproduction are from MODIS/Terra Snow Cover Daily L3 Global 500-m grid prod-
ucts (MOD10A1), which is developed from a linear fit of Thematic Mapper snow cover to the
normalized difference snow index of MODIS.35

2.2 SDC for Patchy Snow Distribution

Since the SCF values are <100% where snowpacks are shallow in most regions of the TP, the
SDC, which represents the empirical corresponding relation between SCF and SD, is more use-
ful for snow modeling. However, in situ observations of SD at a single station are not abundant
for calibrating the regional SDC. Here, we present an alternative method by collecting a set of
station observations.

The basic idea is that, since it is difficult to calibrate the SDC in a specific station, we choose
all stations and their adjacent regions with a resolution of 0.1 deg as subjunctive regions. Then
the in situ observations become sufficient and more reliable for calibrating a general SDC in the
subjunctive region. In this subjunctive region, there are n grids and n SD observations of stations.
Each grid has the same area and the SD was measured at each station in each grid. It is assumed

Fig. 2 The TP region with the meteorological stations overlaying.
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that the SD observation at a station can represent the mean SD of the snow-covered area of
the grid. Then for the total subjunctive regions, the mean SD can be evaluated from

hs ¼
P

k
i¼1 h

i
obsscf iP

k
i¼1 scfi

; (1)

where hs is the mean SD of the subjunctive region, hiobs is the observed SD at the station in
the i grid, scf i is the SCF of the i grid, and k is the number of grids with the stations.

The corresponding SCF of the subjunctive region can be obtained from

scfs ¼
1

k

Xk

i¼1

scfi: (2)

Using Eqs. (1) and (2), we can obtain a pair of hs and scfs for 1 day. For a set of days, an SDC
is expected to be regressed by pairs of hs and scfs of the subjunctive region.

Of course, for a reliable calculation, n should be large enough and the stations should be
randomly distributed throughout each grid. Moreover, the SCF of the region is known because
we have the daily MODIS SCF dataset. Then, the SDC of the subjunctive region can be
evaluated.

Using the above idea, we collected in situ SD data of 94 stations in the TP and used the SCF
data of each grid from the improved MODIS dataset. This gives a subjunctive region with the 94
grids in which each has an SD observation. The scale of the subjunctive region is about 0.1 deg
× 0.1 deg.

An exponential function is used to fit the SDC between SCF and SD (Fig. 3). The coefficient
of determination (R2) of the regression is 0.67. The statistical SDC is used here for transferring
SCF to SD. It is assumed that the calibrated SDC is applicable in constructing a relation between
SCF and SD at the 0.1-deg scale. The SDC can be formulated as

sd ¼ 0.01 · ð27.9scf − 1.0Þ; (3)

where sd is the mean SD of any grid with a resolution of 0.1 deg and scf is the corresponding
SCF value.

As shown in Fig. 3, there are no SCF values greater than 50%, which means that Eq. (3)
cannot be used in cases where SCF is greater than 50%. When SCF is greater than 50%, we adopt
the AMSD combining the microwave remotely sensed SD data and the VNIR SCF data. We
investigate the reliability of microwave SD data when SCF is greater than 50%. The R2 is
about 0.27 between them. The accuracy is not high, however, the microwave SD may be

Fig. 3 The gray curve is the fitted SDC using data from 94 stations in the TP. The years for
the calibration are 2006, 2007, and 2008.
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the only available data for the assimilation scheme when SCF is greater than 50%, because there
is no prior information for constructing an SDC in these cases. On the other hand, the cases when
SCF is greater than 50% are few. Our investigation indicates that these cases only account for
8–18% in snow covered grids in different years in the TP.

2.3 Downscaling of AMSR-E SD Data in Combination with MODIS SCF Data

In this section, we define a combination rule for reproducing a new SD dataset (with a spatial
resolution of 0.1 deg), using the improved AMSR-E (and SSM/I) SD data (with a spatial
resolution of 0.25 deg),12 and the improved MODIS SCF data (with a spatial resolution of
500 m).34,36 The new synthetic SD dataset combining AMSR-E (and SSM/I) and MODIS data-
sets is referred to as AMSD in the following text.

There are two assumptions needed for this rule. First, although SD is inhomogeneous in
a grid of microwave data with a spatial resolution of 0.25 deg, we assume that the SD hetero-
geneity can be effectively described by using MODIS SCF information (500 m). Second, the
SD value from AMSR-E (and SSM/I) is assumed to be the average value of the grid.

Then in a 0.25-deg grid (which is denoted as A),

hi ¼ n × hgrid ×
fiP

n
m¼1 fm

; (4)

where hi is the SD of subgrid i in grid A, n is the number of subgrids, hgrid is the average AMSR-
E (and SSM/I) SD in grid A, fi is the SCF value of subgrid i in grid A, and the denominator is
the sum of SCFs of all subgrids. Because 0.25 deg is not divisible by 0.1 deg, we define the size
of the subgrid as 0.05 deg. Then the 0.05 deg SD data are resampled to a new 0.1 deg AMSD
dataset.

The MODIS SCF data are resampled to 0.05 deg first. Then, the SD data are redistributed
from a resolution of 0.25 deg to a resolution of 0.05 deg using Eq. (4). For avoiding obvious data
errors, three special cases are accounted for:

Case 1: The SCF value is zero in a 0.25-deg grid. In this case, the SD values of all subgrids are valued
as zero.

Case 2: The SCF value is very small (close to zero) while the SD value is greater than zero in a 0.05-deg
grid. In this case, the calculated SD value may be falsely very high, such as greater than 20 m. To avoid
this case, we set a dynamic maximum value for hiðhmax ≤ 5hgridÞ.

Case 3: The SCF value is greater than zero in a 0.05-deg grid while the SD value is zero. In this case,
we adopt an empirical SDC method in which a mapping function between SCF and SD is constructed,
as is suggested in the above section.

An example is illustrated in Fig. 4.

2.4 Distributed Meteorological Data

There are few meteorological stations in the TP. It is not enough to provide a reliable spatially
distributed meteorological dataset for the vast region. For reliable meteorological forcing data
in simulating the SD distribution, we adopt the downscaled meteorological data from the WRF
model.37 The WRF model is a fully compressible, Euler nonhydrostatic mesoscale forecast
model with a runtime hydrostatic option. This model is effective in downscaling weather and
climate data at scales from 1 to 100 km.

By using meteorological data with a spatial resolution of 1 deg and a temporal resolution of
6 h from the global forecast system (GFS), downscaled daily meteorological data with a spatial
resolution of 0.1 deg were simulated for the TP. This dataset has been validated in the Heihe
River Basin, which is located in the northeastern TP, using daily meteorological observation data
from 15 stations of the China Meteorological Administration and hourly meteorological obser-
vation data from Watershed Airborne Telemetry Experimental Research project sites.38,39

Comparisons indicate that the WRF model simulations of air temperature, surface pressure,
and relative humidity are very reliable and that the precipitation, wind speed, and downward
shortwave radiation are relatively good.40
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2.5 SnowModel

We choose SnowModel31 as our model operator. SnowModel is a distributed snow evolution
system which has been used and validated in many snow regions. This model system includes
a distributed meteorological forcing conditions module, a surface energy exchange module
(EnBal), a snow mass evolution module (SnowPack), and a snow redistribution module.
Because the meteorological forcing has been generated from the WRF model, and the snow
redistribution at the 0.1-deg scale is ignored in this study, we choose EnBal and SnowPack mod-
ules to simulate the snow distribution evolution. It is assumed that the snow evolution is

Fig. 4 Illustration of the filtered SCF data at 0.1 deg (a), AMSR-E SWE of 0.25 deg (b) and their
combination of 0.1 deg (c) on March 25, 2008.
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homogeneous in the snow-covered area in a 0.1-deg grid. The vegetation distribution data are
from the Environmental and Ecological Science Data Center for West China, National Natural
Science Foundation of China (http://westdc.westgis.ac.cn).

2.6 DA Strategy

In the study, the EnKF method41 is used to assimilate the improved SD estimates into
SnowModel. We use 50 ensemble members in the ensemble forecast. Selected forcing and
state variables are perturbed; these include the four forcing datasets (downward shortwave
radiation, downward long-wave radiation, precipitation, and air temperature) and the model
state SD and the state variable (combined 0.1 deg AMSD data). The perturbation rule used
here follows that of the previous studies.28,42 The SD is initially perturbed. The four forcing
data are perturbed during loops. Since we use a one-dimensional EnKF in the study, the per-
turbations of forcing data are not spatially correlated. The shortwave radiation and precipitation
suffer from multiplicative perturbations, whereas perturbations of air temperature and longwave
radiation are additive. The mean values of all these perturbations are zero. The standard devia-
tions and cross-correlations are listed in Table 1.

3 Results and Discussion

3.1 Simulation Results of the SD Distribution

The time series of the assimilated SD dataset is calculated from 2000 to 2008. The monthly mean
SD values are presented in Fig. 5.

Table 1 Perturbation parameters in the EnKF estimation of SD.

Variable Standard deviation Cross-correlation

Air temperature 0.5°C 1.0 −0.5 0.3 0.6

Precipitation 0.5 −0.5 1.0 −0.5 0.5

Shortwave radiation 0.1 Wm2 0.3 −0.5 1.0 −0.3

Longwave radiation 15 Wm2 0.6 0.5 −0.3 1.0

Snow depth 0.2 — — — —

Fig. 5 Comparison of different evaluated snow depths from 2000 to 2008 in the TP.
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When the mean SD ranges from 0.005 to 0.010 m, the downscaled microwave SD is close to
the evaluated SD using the SDC method. When the mean SD is <0.005 m and >0.010 m, there
is a large difference between the evaluations. Because the SDC method is ineffective when the
SCF is equal to 100%, the disagreement in the high-value range is reasonable. However, when
the snow is shallow, the microwave SD values have a greater accuracy. This is the main reason
why the two results have a greater difference in the lower value range. The assimilated results are
slightly less than the downscaled microwave SD values and the evaluated SDs using the SDC
method. Some studies have indicated an overestimation of SD from AMSR-E data;43 this can be
attributed to the limitation of the current AMSR-E algorithm to account for the large grains that
typically develop in snowpacks.10 Lower SD results may be more reasonable.

3.2 Spatial Validation Using Distributed Snow Stations

One of the dominant constraints in simulating snow distribution using models is the lack of
“real” validation data. Of course, remotely sensed SD and SCF data can be regarded as possible
validation data sources. However, they are indirect. Unknown system and algorithm errors may
be involved when using remotely sensed data. In contrast, in situ station observations are rel-
atively reliable and are continuous over multiple years, but the scale effect would affect their
representative capacity. Because complex topography dominates the TP, in different study grids
with complex terrain the mean SD on the grid scale can be significantly different from the
point SD.

Following a method similar to that in Sec. 2.2, we design a random sampling comparison
method for a reliable validation. We construct a subjunctive region with n stations, but we do not
use a single point observation to validate the assimilated results. By using Eq. (3), the mean SD
value of the subjunctive region can be evaluated using observations at stations. If the assimilated
results are correct, these should be approximately equal to the assimilated mean SD of the
selected subjunctive region. Of course, the station locations should be randomly distributed
within each grid. If these stations are all randomly distributed in all grids, then Eq. (3) is
more reliable, since we use a random sampling method.

First, those grids with meteorological stations are selected as comparison samples. For
validating whether these stations are randomly distributed within each grid, the grid is divided
into two parts by the station elevation: (1) the area in which the elevation is greater than that of
the station and (2) the area in which the elevation is lower than that of the station. We illustrate
the histogram of the proportions of the first part in all these grids (Fig. 6). It is obvious that the
elevation areas divided by these stations are randomly distributed about 0.5 in all grids, thus
confirming that these stations are randomly distributed in the selected region.

Fig. 6 Histogram of the area proportions of the partial regions in which the elevation is higher than
the station elevation.
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Then, the mean SD value at these grids in the subjunctive region is regarded as the “real” SD.
For comparison, the evaluated SD values in each grid from the assimilated results are averaged.
The comparison results are illustrated in Fig. 7.

The assimilated SD and AMSD data are compared to the in situ observations. The RMSE is
used to quantify the accuracy. The RMSE of the assimilated results are in the range [0.002 m,
0.008 m], and that of the AMSD results are in the range [0.004 m, 0.021 m]. In all the years,
the accuracy of the simulation is improved, most especially in 2005, 2006, 2007, and 2008.
This suggests that the assimilated results become closer to the in situ observations and that
the evaluating accuracy is improved by using the synthesis method suggested in this study.
We investigated the determination coefficients and the Pearson product-moment correlation
coefficients (r) for these nine years. The range of the determination coefficients is in the
range [0.10, 0.72], and the range of Pearson correlation coefficients is in the range [0.61,
0.87]. These coefficients indicate there are stronger correlations between the assimilated results
and the in situ observations. It should be noted there are some low values in the determination
coefficients. Such as, the R2 is 0.10 in 2000. This suggests there are some incorrect estimations
in the results, although the Pearson r is 0.73.

There are noticeable cases in which the assimilated SD and AMSD are close to zero whereas
the observations are much greater than zero. The reason for this discrepancy is that remotely
sensed data cannot provide the snow information in these cases. Shallow snow cover and wet
snow hardly attenuate microwaves and do not give the volume scattering necessary for snow

Fig. 7 Comparison between simulated and observed results. The observation is the mean
observed SD of select stations and the values on the y axis are the mean simulated SD of cor-
responding grids. The red cycles denote the assimilated results and the gray circles denote
the AMSD results. From years 2000 to 2008, R2 is 0.10, 0.12, 0.49, 0.11, 0.35, 0.54, 0.53,
0.32, and 0.72, respectively, Pearson r is 0.73, 0.66, 0.81, 0.61, 0.79, 0.79, 0.82, 0.76, and
0.87, respectively.
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volume determination.44 This explains why snow cover is not monitored by RS while there is
snow or even deep snow at the stations. When the assimilated SD is close to zero, this means that
SCF or AMSD is close to zero also, because the SD observation used in the assimilation strategy
is from SDC transferring or AMSD. Although better simulation results are obtained by using an
assimilation strategy, combining information from different RS data and meteorological data, the
assimilated results are also apparently hampered by the accuracy of observations. Improvement
of retrieval algorithms to obtain microwave SD in rugged mountain areas is needed for a better
simulation of the snow distribution.

3.3 Factors Influencing Evaluation Results

Snowpack in the TP is patchy and shallow and changes rapidly in most cases. There are complex
terrain conditions and a varied distribution of vegetation in the TP. With the consideration of data
availability and the features of the snow distribution in the TP, a series of empirical methods are
used in the study. Topographic features and snow distribution characteristics, which affect the RS
data availability and snow processes, are the most important reasons why we use these methods.
There are three important steps in our study: downscaling of microwave SD data, transferring
between SCF and SD using the SDC, and simulation of snow processes. Here, we discuss
how characteristics of the snow distribution and topography influence the evaluating results
in these steps.

When the microwave SD data are downscaled, SD at the subgrid scale of 0.1 deg is evaluated
by the proportional weight of SCF to the whole snow-covered area in the grid with a resolution of
0.25 deg. The implicit assumption here is that the SCF of a grid is directly proportional to the SD.
Obviously, the assumption varies over different terrains. However, we have not adopted further
improvement in the combination method. We did attempt to construct an SDC relation between
SCF and microwave SD, but found that the goal could not be achieved. There is only a very weak
correlation between the two. We suppose the most important reason for this failure is that the
snowpack is shallow and that the terrain is mountainous. In some of the literature, it has been
suggested that microwave SD values have large uncertainties in patchy and shallow snowpack
regions.44 However, there are not enough data to support reliable prior relations between SD
and SCF in different terrain conditions. In fact, the SCF is patchy in most cases. In these
cases, we use an empirical SDC method to transfer SCF to SD. The combined SD is regarded
as an observation operator in the assimilation framework only in cases in which SCF is greater than
50%. Although the different terrain conditions could affect the downscaling accuracy of SD, we
believe the present method to be reasonable given the limitation of data and available information.

In the cases in which the snow distribution is patchy, we construct a general SDC relation
between SD and SCF. Of course, the most reliable method is to construct different regional SDCs
under different topographic conditions. However, there are few data to construct these relations.
Although there are 94 stations with snow observations in the study region, there are almost no
continuous observations nor enough data to support the regression of SDC under different con-
ditions because of the short snow period and missing observations. Therefore, we suggest
a compromise in this study, in which the SDC is constructed based on the mean in situ SD
of all stations. There are good correlations between the averaged in situ SD and SCF, indicating
that the SDC concept, used in many other studies,45,46 is also suitable to the TP region. Although
there are some calibrated SDCs in other study regions with good data,47 those calibrated param-
eters could not be used directly in the TP, because the snow in this region has features that differ
from those of other regions. Liston et al.48 also indicated that the key parameters will be de-
pendent upon different topographic scales. With only SCF assimilation, Lannoy et al.28 indicated
that the simulated timing of the onset of the snow season was improved, but without an improve-
ment of SWE amounts. There are many reasons for the result, but mostly the complex relation-
ship between SCF and SWE is responsible. Since we could not calibrate regional SDC in the TP
based on the existing observations, a general SDC is reasonable as a substitute. The results show
relevant simulation results that are close to the truth.

Modeling of snow processes is also influenced by topography. In our study, the forcing data
have a spatial resolution of 0.1 deg, so the corresponding modeling unit is also 0.1 deg. In the TP
region at this scale, the terrain is very complex, with features such as meadows, forests, and so
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on. In this study, snowmelt is regarded as uniform because of the limitation of computation speed
and forcing data. Accurately examining the snow simulation at the subgrid scale is very impor-
tant. With different parameterized considerations of inhomogeneous snow processes at the sub-
grid scale, the simulations are expected to lead to very different results. This subject is of interest
for further study. A method to take into account computation performance and inhomogeneous
snow processes at the subgrid scale is also needed in the future.

4 Conclusions

We present a synthesis simulation method for the TP region in which available in situ obser-
vations are sparse, utilizing different RS data, a model, and an assimilation method. Nine years of
the snow distribution data are simulated through this method from 2000 to 2008. The results are
proved be close to the truth by comparing with the mean observed SD of stations. Since TP is
a typical ungauged region, the method we presented here is expected to be applicable to other
similar regions.

In our method, VNIR SCF data and microwave SD data are combined to produce a series of
outputs of 0.1 deg SD distribution, by using an empirical rule. It is found that the downscaled
microwave SD distribution could not match the in situ observations very well because of scale
effects and other sophisticated reasons. Only in regions with thick and wide snow distribution
are microwave data, which are regarded as more reliable, used in our study. A good fit between
the mean in situ SD of stations and remotely sensed SCF is used for obtaining SD values when
snow is patchy and shallow. It is suggested that the relation between SD and SCF is obvious.
In our study, only a general SDC is used from an operational statistic. With more detailed in situ
observations, more accurate and regional relations may be found. However, for wider applicabil-
ity, these relations should be regionally parameterized with consideration of topography, under-
lying conditions, and so on.

In situ observations of SD on a point scale is not suitable for validating the simulation result
of the corresponding grid because of the complex scale difference. In this study, the spatial mean
SD of stations is used to validate the simulation results. This validation method could also serve
as a useful reference in similar cases in which only station observations are available for val-
idation. Of course, finding more common and relevant validation methods will be needed for
inhomogeneous spatial validation.
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