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Abstract. We present results from an ongoing effort to extend neuromimetic machine vision
algorithms to multispectral data using adaptive signal processing combined with compressive
sensing and machine learning techniques. Our goal is to develop a robust classification meth-
odology that will allow for automated discretization of the landscape into distinct units based on
attributes such as vegetation, surface hydrological properties, and topographic/geomorphic char-
acteristics. We use a Hebbian learning rule to build spectral-textural dictionaries that are tailored
for classification. We learn our dictionaries from millions of overlapping multispectral image
patches and then use a pursuit search to generate classification features. Land cover labels
are automatically generated using unsupervised clustering of sparse approximations (CoSA).
We demonstrate our method on multispectral WorldView-2 data from a coastal plain ecosystem
in Barrow, Alaska. We explore learning from both raw multispectral imagery and normalized
band difference indices. We explore a quantitative metric to evaluate the spectral properties of the
clusters in order to potentially aid in assigning land cover categories to the cluster labels. Our
results suggest CoSA is a promising approach to unsupervised land cover classification in high-
resolution satellite imagery. © The Authors. Published by SPIE under a Creative Commons Attribution
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1 Introduction

Techniques for automated feature extraction, including machine vision and pattern recognition
algorithms, have been of much interest in the areas of change detection and land cover classi-
fication in remote sensing datasets of satellite and aerial imagery.1 Despite vast archives of glob-
ally distributed remotely sensed data collected over the last four decades and the availability of
computing resources to process these datasets, global assessment of all but the simplest land-
scape features is presently not feasible. This limitation arises from the substantial human inter-
vention needed to accurately train current state-of-the-art feature extraction software and the
limited applicability of resulting feature extraction solutions to multiple images. Without
more robust and adaptive methods to identify and extract land surface features, Earth scientists
lack critical datasets needed to parameterize models and quantify climatic and land use driven
changes. Given the much improved resolution of Woldview-2 multispectral satellite data at
1.8 m∕pixel nadir compared to, e.g., multispectral Landsat data at 30 m∕pixel, such surface
changes are now more readily visible and can be more closely monitored.
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Recent work in the area of climate change modeling and monitoring has indicated that air
temperatures have been rising in both Alaska2,3 and the western Canadian Arctic2,4,5 over the
last few decades. Global climate models suggest that the Arctic will continue to warm more
rapidly than southerly locations,2 drawing significant attention to this region among clima-
tologists. The Arctic biome is responding to this warming, and the effects are multiple and
interconnected. In the terrestrial biome, the thawing of the permafrost can be indirectly stud-
ied using surface changes in vegetative cover6–9 or in geomorphic features, such as polygo-
nal ground and river banks.10 Specifically, warming alters transitional regions between
upright and dwarf shrub tundra,11 and there has been evidence of increasing shrub cover in
air photos12 and of changes to vegetation indices derived from satellites.6–9 Colonizing
shrubs affect snowpack depth, although it is yet unclear at what magnitude and in what
direction.5 Recent studies have attributed dramatic increases in the rates of shoreline erosion
along Arctic coastlines and riverbanks to global climate change and near-surface permafrost
degradation.13,14 Across much of the Arctic, the number of lakes and their sizes have also
been changing as a result of permafrost degradation,15 altering surface water dynamics and
causing possible release of soil organic carbon.16 Given the much improved resolution of
Woldview-2 satellite data, such surface changes are now more readily visible and can be
more closely monitored.

Land cover classification in satellite imagery presents a signal processing challenge, usually
due to the lack of verified pixel-level ground truth information. A large number of proprietary
and open source applications exist to process remote sensing data and generate land cover clas-
sification using, for example, normalized difference vegetative index (NDVI) information,17 or
unsupervised clustering of raw pixels. These techniques rely heavily on domain expertise and
usually require human input. Other land cover classification approaches involve the use of state-
of-the-art genetic algorithms, such as GENIE,18–21 to extract a particular class of interest in a
supervised manner. GENIE and GeniePro are feature extraction tools developed at Los Alamos
National Laboratory for multispectral, hyperspectral, panchromatic, and multi-instrument fused
imagery, but they require supervision in training, too. One of the main limitations is the difficulty
in providing clean training data, i.e., only pixels that truly belong to the class of interest. This is
easier to do when the classes are well separated spatially from other classes, such as water bodies
from land or golf courses from buildings,22 but much more difficult to do when the classes are
spatially mixed (e.g., tundra shrubs and grasses).

Such techniques have been successful for lower-resolution satellite data, but they rely heavily
on domain expertise and frequently require human input or supervision.21 They perform well on
certain types of problems, such as distinguishing between water and land features (e.g., auto-
matic lake detection), or specific vegetative analysis, but are usually not robust for spatially
mixed classes. The quality of spectral unmixing plays an important role in extracting information
and features from low-resolution pixels, and historically, it has been a typical step in processing
and classifying multispectral and hyperspectral data. In the case of Worldview-2 multispectral
imagery, however, spectral unmixing is less of a problem due to the much enhanced pixel res-
olution. The challenge instead lies in context-based information extraction using spatial and
spectral texture generated by adjacent pixels. The textural patterns in a given image also
need to be learned based on the wider-area context provided by the full image scene, usually
necessitating significant computational resources and creative software optimization. Many cur-
rent users of multispectral Worldview-2 data resort to downsampling the image to equivalent
Landsat resolution in order to facilitate feature extraction using available commercial
applications.

A fundamental problem to creating scalable feature extraction technology capable of
processing imagery datasets at global scales is the overconstrained training needed to gen-
erate effective solutions. Many features of environmental importance, such as, but not limited
to, rivers, water bodies, coastlines, glaciers, and vegetation boundaries, are readily recogniz-
able to humans based on a simple set of attributes. The very best of current feature extraction
software, e.g., LANL-developed GeniePro, however, require extensive, image-specific train-
ing that leads to a solution with limited applicability to images other than the image used for
training. Developing automatic, unsupervised feature extraction and high-resolution, pixel-
level classification tools can, therefore, have a significant impact in studying climate change
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effects and would provide the climate change community with more exact ways of detecting
these changes.

We present a technical solution for unsupervised classification of land cover in multispectral
satellite imagery, using sparse representations in learned dictionaries: clustering on sparse
approximations (CoSA). The CoSA algorithm is derived from previous work and was first intro-
duced and demonstrated on a selected dataset in Refs. 23 and 24. A Hebbian learning rule is used
to build multispectral, multiresolution dictionaries that are adapted to regional satellite image
data. Sparse image representations of pixel patches over the learned dictionaries are used to
perform unsupervised k-means clustering into land-cover categories. This approach combines
spectral and spatial textural characteristics to detect geologic, vegetative, and hydrologic fea-
tures. Here we focus on a particular Arctic ecosystem study area and explore two feature extrac-
tion processes using Hebbian learning. The first is based on learning from eight-band
multispectral pixel patches, and the second is a novel approach based on learning features
from normalized band difference indexes. We also introduce a possible clustering separability
metric based on intrinsic data properties. A few of these findings were presented in Ref. 25, and
in this manuscript, we detail the algorithm to learn from both raw multispectral imagery, as well
as normalized band difference indices and provide additional detail on implementation. We
include complete results on Barrow data for all the different feature extraction scenarios we
explored, as well as a detailed quantitative analysis on performance and on comparison of dic-
tionary types. Our results suggest that CoSA is a promising approach to unsupervised land cover
classification in high-resolution satellite imagery.

The layout of the paper is as follows. In Sec. 2, we describe the study area and the satellite
data used in this work and highlight classification results obtained with a standard remote sens-
ing software package. In Sec. 3, we outline our Hebbian method of learning dictionaries of
features and explore their spatial and spectral properties. We summarize our CoSA method,
discuss land cover clustering results using two types of learned features, and introduce a
label separability metric in Sec. 4, and conclude with brief remarks in Sec. 5.

2 Arctic Study Site

Located within the Alaskan Arctic Coastal Plain, on the Chukchi Sea coast, the village of Barrow
is the northernmost community in the United States (Fig. 1), located around 71.2956° N,

Fig. 1 WorldView-2 image of Barrow study area, northern Alaska, shown in (8,6,4) band combi-
nation (left). This region is dominated by water and polygonal ground, both high centered and low
centered, that is, low moisture and high moisture soils. White rectangular markup in the left image
shows the region of analysis.
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156.7664° W. The nearby area includes the study site for a Department of Energy Next
Generation Ecosystem Experiments (NGEE-Arctic) project. The long-term goal is developing
an ecosystem model that integrates various observables, including vegetative changes, land-sur-
face characteristics, surface water dynamics, and subsurface processes causing possible release
of soil organic carbon, among others.

In this paper, we focus on extracting land surface features using DigitalGlobe’s WorldView-2
satellite imagery. The sensor provides the highest resolution commercially available multispec-
tral data at 1.8 m∕pixel spatial resolution and has eight multispectral bands: four standard bands
(red, green, blue, and near-infrared 1) and four new bands. Ordered from shorter to longer wave-
length, the list of bands is coastal blue, blue, green, yellow, red, red edge, near-infrared 1 (NIR1),
and near-infrared 2 (NIR2).26 This high spatial resolution leads to imagery characterized by very
rich textures and a great level of detail, enabling more in-depth land cover analysis. The orthor-
ectified image in Fig. 1 was acquired during the summer in mid-July and shows the greater
Barrow area, with spatial extent ∼12.2 km × 14.4 km (530 Mpixels multispectral). Here we
show an (8,6,4) band combination (i.e., NIR2, red edge, and yellow), which is especially useful
in vegetation analysis and biomass studies. For ease of visualization, we focus on the region
delineated by the white rectangle in Fig. 1, of approximate spatial extent 1.9 km × 5.4 km,
and show that zoomed-in section in Fig. 2.

Here we use the red, green, and blue (RGB) band combination, which highlights the degree
of water turbidity, due largely to suspended sediment, in the lakes and rivers, as well as the rich
geomorphic texture present in the Barrow area. The region includes a mosaic of thaw lakes,
drained thaw lake basins, and interstitial polygons,27,28 both high centered and low centered
(i.e., low moisture and high moisture soils). Polygonal ground is a geomorphic feature common
in permafrost regions and is the object of much study in the Barrow region. Such frozen soil can
be dry, or it can contain ice, which is usually found in large wedges forming a honeycomb of ice
walls beneath the soil surface. Polygonal tundra landscapes are highly heterogeneous, varying
substantially over spatial scales of only a few meters and, thus, presenting a significant challenge
for developing the vegetation maps needed to scale plot-level measurements to wide-area cover-
age maps landscape. Vegetative gradients exist both within a single polygon type and between
polygon types with differing degrees of ice-wedge degradation.29 Plant communities are linked
to polygon-induced microtopography and include sedges, mixed tall graminoid-forb-moss com-
munities, graminoid-lichen communities, and low-stature, lichen dominated communities. Leaf
area index for the region29 is higher in trough communities (averaging between 0.7 and
1.1 m2∕m2) and decreases from wetter to drier areas along the moisture gradient (averaging
between 0.1 and 0.5 m2∕m2).

This reduced area image will be subsequently used in this paper both for dictionary learning
and for cluster training.

Fig. 2 Barrow zoom area, northern Alaska, shown in red, green, blue (RGB) band combination.
This reduced area image will be subsequently used in this paper both for dictionary learning and
for cluster training.
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2.1 Current Classification Methods and Performance

Several existing remote sensing unsupervised classification approaches were used to generate
land cover classification maps for comparison to our CoSA method. We show two representative
results from one of the most widely used remote-sensing software packages, the Environment for
Visualizing Imagery (ENVI), distributed by Exelis Visual Information Solutions out of Boulder,
Colorado. We applied ENVI’s unsupervised classifiers (IsoData and K-means) to the eight-band
multispectral Barrow image to highlight the limitations of such approaches, as previously dis-
cussed in Ref. 23. Figure 3 shows the IsoData classification result using all eight spectral bands
(17 final clusters), and Fig. 4 similarly shows the result of ENVI K-means clustering into 20
clusters using all eight bands. Upon visual inspection, IsoData appears better than K-means at
retaining the polygonal ground features, and it appears to be particularly sensitive to hydrologic
features. The K-means result does not appear to lead to overall meaningful clustering that is
particularly good at identifying all the features and the structures present in Fig. 1.

2.2 Normalized Band Difference Analysis

In the absence of pixel-level ground truth for our satellite imagery, much of the initial perfor-
mance assessment of the CoSA algorithm is qualitative and helps guide the research efforts
toward parameters leading to meaningful clustering. One such qualitative technique is based
on normalized band difference analysis. This is a relatively common approach to estimating
land cover labels and involves manipulating spectral bands into index images, e.g., NDVI,17

and then assigning binned index values to actual categories by a domain expert.

Fig. 3 IsoData Environment for Visualizing Imagery (ENVI) classification results on the Barrow
training area using 17 final clusters.

Fig. 4 K-means (ENVI) classification results on the Barrow training area using 20 clusters.
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A normalized band difference ratio is typically derived to measure absorption in a portion of
the spectrum relative to reflectance or radiance in another part of the spectrum. In this paper, we
will consider a total of four normalized band difference index ratios, including NDVI, proposed
to support land mapping methods using WorldView-2 imagery and modified from Ref. 30. All
eight spectral bands provided by this sensor are used in one such index ratio in order to provide
some context of possible use with respect to traditional index analysis techniques. We will use
these indices both for separation analysis of our CoSA land cover classification, as well as for
dimensionality reduction in a modified CoSA algorithm.

The NDVI uses a red and NIR1 band combination. It is the most well-known band difference
index and is used to detect live green plant canopies in multispectral remote sensing data and
their condition. The NDVI is directly related to the photosynthetic capacity and energy absorp-
tion of plant canopies, and areas containing dense vegetation will tend to positive NDVI values
(e.g., 0.3 to 0.8).17 By contrast, features such as clouds and snow tend to be rather bright in the
red band (as well as other visible wavelengths) and quite dark in the NIR band, leading to neg-
ative NDVI values. Other targets, such as water bodies or soils, will both generate small positive
NDVI values, or in the former case, sometime slightly negative NDVI values, and thus, they are
not separable with confidence using NDVI.17 Domain expert input is typically required to prop-
erly decide the binning of NDVI coefficients.

The normalized difference wetness index (NDWI) is moisture sensitive and traditionally uses a
blue band that is normalized against an NIR band. For the moisture-rich Barrow data case, we use
the coastal blue band and the NIR2 band, since this band combination offers the greatest dynamic
range in the NDWI. For the normalized difference soil index (NDSI), short-wave infrared (SWIR)
and NIR bands are normally used to capture the difference in reflectance values in soil areas. Since
WorldView-2 data do not include an SWIR band, we can use the differences in the response values
of soil between the green and yellow bands. This consistent and unique difference was first noted
upon in Ref. 30 and was supported using soil samples drawn from within the scene. The non-
homogeneous feature distance (NHFD) band ratio we use is generated using the new red edge
band normalized with respect to the blue band, that is, the two WorldView-2 bands remaining
to be used in our analysis. This choice is slightly different from Wolf’s use of the red edge
and coastal blue bands for the NHFD index in Ref. 30, and was motivated by our desire to
use all eight bands in a unique band ratio combination. NHFD’s intended use is to help identify
areas of contrast against the background, in particular man-made features. The four indices, cor-
responding band ratios, and potential utility are summarized in Table 1 below.

Figure 5 shows the four images corresponding to the above-described difference indices,
displayed using the same color scheme and the same color axis. As expected for the Barrow
area, NDVI and NDWI (top panel) capture most of the dynamic range (e.g., moisture is a dom-
inant feature), and NHFD (bottom right) provides only moderate separation between dry and
moist areas. NDSI (bottom left) as defined here unsurprisingly offers little separation between
the different geomorphic features, as soil is present across the Barrow image.

Table 1 Index ratios proposed to support land mapping methods using WorldView-2 data,
adapted from Ref. 30.

Index Band ratio Purpose

Normalized difference
vegetation index (NDVI)

NDVI ¼ P½ðRed − NIR1Þ∕
ðRedþ NIR1Þ�

Identify vegetated areas and
determine the health of each
vegetation class.

Normalized difference water/
wetness index (NDWI)

NDWI ¼ P½ðCoastal − NIR2Þ∕
ðCoastalþ NIR2Þ�

Identify standing water areas
and determine moisture
content of vegetation and soil.

Normalized difference soil
index (NDSI)

NDSI ¼ P½ðGreen − YellowÞ∕
ðGreenþ YellowÞ�

Identify areas where soils are
the dominant material.

Nonhomogeneous feature
difference (NHFD)

NHFD ¼ P½ðRedEdge − BlueÞ∕
ðRedEdgeþ BlueÞ�

Identify areas of contrast
against the background.

Moody et al.: Land cover classification in multispectral imagery using clustering of sparse. . .

Journal of Applied Remote Sensing 084793-6 Vol. 8, 2014



3 Dictionary Learning for Multispectral Data

A domain expert manually derives land cover classification by taking into account both spectral
information (e.g., normalized difference indices), as well as spatial texture, that is, context given
by adjacent pixels. For low-resolution images (e.g., 30 m∕pixel for Landsat), the spatial context
is frequently embedded in a single pixel, leading to challenging pixel unmixing problems. For
the high-resolution data considered here, such spatial context can provide useful discriminative
information. In this paper, we build upon our existing work of learning feature dictionaries from
multispectral patches of satellite image data.23–25,31 A dictionary learning algorithm is used to
extract features directly from the data itself without an underlying analytical model. We previ-
ously extended learned dictionaries techniques to satellite imagery classification using a modi-
fied Hebbian learning rule. Here we now expand upon the dictionary dimensionalities explored
and also introduce a new learning approach.

3.1 Dictionary Learning Algorithm

The image is processed in pixel patches of various sizes, depending upon the dictionary spatial
resolution we wish to use, as described in Secs. 3.2 and 3.3. Given a training set of image
patches, each reshaped as a one-dimensional (1-D) vector, the dictionary is initialized by seeding
the dictionary elements with randomly drawn unit-norm training patches (i.e., imprinting). The
dictionary is learned, or updated, by minimizing a cost function E for sparse representation of an
input vector, xi, given by

E ¼ kxi −Φaik22 þ λSðaiÞ: (1)

The first term measures the mean-square reconstruction error, while the second term enforces
sparsity in the coefficient vector, ai. Here, λ is a Lagrange multiplier, and the function S the l0 or
l1 norm of the vector ai. We learn the dictionary Φ using multiple learning iterations, C (i.e., C
describes the number of times the dictionary sees the entire training set of P vectors). During a
single learning iteration, the entire training set is viewed in random order in small batches. The

Fig. 5 Normalized difference index images for the Barrow zoom area, displayed using the same
color scheme and color axis. Normalized difference vegetation index (NDVI) and normalized differ-
ence water/wetness index (NDWI) provide the most dynamic range, while normalized difference
soil index (NDSI) captures least amount of discriminative information.
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dictionary learning consists of two stages. In the sparse coding stage, we minimize the functional
E over ai for the case of S being the l0 norm. That is, given the currentΦ, we seek an Ltrain-sparse
weight vector ai (i.e., with at most Ltrain nonzero coefficients) for each training vector xi, such
that Φai is a sufficiently good approximation to the input.

min
ai

fkxi −Φaik22g; subject to kaik0 ≤ Ltrain: (2)

Computationally, this problem is NP-hard, but there are well-known approaches to finding
good approximate solutions for ai using, e.g., a greedy matching pursuit (MP) algorithm.32 At
the first MP iteration, we find the dictionary element giving the largest inner product with xi. The
contribution of this element is subtracted from the signal, and the process is repeated on the
residual. This continues until some predetermined stopping point (e.g., number of returned ele-
ments or size of the residual). Other approaches to forming good approximate sparse represen-
tations, such as orthogonal matching pursuit33 or an l1 basis pursuit,

34 can also be used. Once the
ai vector is found, the dictionary update for every k element of the dictionary, Δφk, is obtained
by performing gradient descent on the cost function E, resulting in a dictionary update given by

Δφk ¼ aikðxi −ΦaiÞ; (3)

∀ φðcÞ
k ∈ ΦðcÞ; φ̂ðcþ1Þ

k ¼ φðcÞ
k þ ηΔφðcÞ

k ; (4)

where η controls the learning rate, and the updated dictionary element is normalized to unit norm.
The dictionary learning continues until learning convergence is achieved for all dictionary
elements.

The choice of dictionary size, K, can have a significant impact on computational demands. A
large portion of dictionary design work in image processing has focused on overcomplete dic-
tionaries for increasingly sparse representations. One would expect that the dictionary size
depends on the amount of training data available and the inherent dimensionality of the
data. Recent publications on dictionary learning frequently assume it is necessary for the dic-
tionary to be overcomplete with respect to the ambient input dimensionality, i.e., the length of the
training vectors. While that may be a safe assumption to make, a more intuitive hypothesis is that
the effective dictionary dimensionality needs to be overcomplete with respect to the training data
space dimensionality, or the intrinsic input dimensionality. This intrinsic dimensionality is prac-
tically hard to evaluate, and for the specific task at hand, i.e., unsupervised classification in
multispectral imagery, we empirically fixed the dictionary sizes we considered similar to our
work in Ref. 24.

3.2 Multispectral Learned Dictionaries

Tens of millions of overlapping eight-band pixel patches are randomly extracted from the entire
image and used to learn undercomplete dictionaries with an on-line batch Hebbian algorithm,
briefly described below. In terms of input dimensionality, the satellite imagery is processed using
square multispectral pixel patches of p × p × 8 pixels, where p defines the spatial resolution of
the patch. A pixel patch is reshaped as a 1-D vector of overall length N, where N is the ambient
input dimensionality. Four different spatial resolutions of 5 × 5, 7 × 7, 9 × 9, and 11 × 11 pixel

patches are used to learn distinct dictionaries. Given the 1.82 m pixel resolution of WorldView-2
imagery, the chosen patch sizes map to physical square areas of approximate length 9.1, 12.8,
16.5, and 20.2 m, respectively. These spatial resolutions result in ambient dimensionalities of
N ¼ 200, 392, 648, and 968 vector length, respectively. The learned dictionaries are chosen to
have a constant size of K ¼ 300 elements at each of the four spatial resolutions, making them
overcomplete by a factor of 1.5 in the first case and undercomplete by a factor of 0.8, 0.5, and
0.3, respectively, in the latter three cases.

We use dictionary quilts to visualize the spatial texture learned by the dictionary elements.
Dictionary quilts are obtained by stacking images of all the dictionary elements in matrix form.
Every dictionary element of length N is reshaped in the p × p × 8 format, and an image of the
element is then formed using the desired three-band combination. The quilts are a qualitative
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view of the dictionaries and provide insight into what type of land features are learned by each
element. Figure 6 (top panel) shows quilts of the learned dictionaries for each of the four patch
sizes (from left to right, 5 × 5, 7 × 7, 9 × 9, and 11 × 11), for a (5,3,1) band combination. The
bottom panel of Fig. 6 similarly shows quilts of example learned dictionaries for each of the four
patch sizes, but now for an (8,6,4) band combination to highlight vegetative features.

Each dictionary element is shown in the same position on the respective quilt for the two band
combinations. Upon visual inspection, almost all the elements exhibit texture (i.e., variability in
pixel intensity), and many contain oriented edges. We note that some of the elements that appear

Fig. 6 Quilts of dictionary elements for the Barrow data learned from pixel patches of spatial extent
5 × 5 (first column), 7 × 7 (second column), 9 × 9 (third column), and 11 × 11 (fourth column). All
dictionaries have K ¼ 300 elements; each of the small squares in a quilt represents a multispectral
dictionary element. The top panel shows the (5,3,1) band combination, and the bottom panel
shows the (8,6,4) band combination.
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more uniform or more muted in one band combination exhibit more texture or intensity in the
other band combination; that is, dictionary elements are sensitive to both spatial and spectral
information. The Barrow dictionaries have features with sharp boundaries, i.e., high contrasts
between two adjacent smooth features. This is consistent with the larger degree of geomorphic
texture present in the Barrow image.

3.3 Index Learned Dictionaries

We used the four normalized difference index images defined in Sec. 2.2 as the training data for
our dictionaries. Specifically, the eight original WorldView-2 bands were replaced with the four
corresponding index bands: NDVI, NDWI, NDSI, and NHFD. The data dimensionality is, thus,
reduced by a factor of 2, which is helpful in reducing computational overhead. Additionally, as
seen in Fig. 5, the type of discriminative features contained in the index bands can potentially
steer the learning, by increasing separation in the training data between moisture content and
vegetation (NDVI and NDWI), and diminishing the impact of soils on the other (NDSI). We
again learn dictionaries for the patch sizes of 5 × 5, 7 × 7, 9 × 9, and 11 × 11, but this time
reduce their dimensionality by a factor of two, resulting in number of elements K ¼ 150;
we show the resulting dictionary quilts in Fig. 7 in an (NDVI, NDWI, NDSI) band combination
to highlight the spatial texture captured by these index dictionaries.

4 Clustering of Sparse Approximations

The CoSA algorithm seeks to automatically identify land cover categories in an unsupervised
fashion. A k-means clustering algorithm is used on undercomplete approximations of image
patches (i.e., feature vectors), which in turn were found using the learned dictionaries. The
main steps of the CoSA algorithm are summarized in Ref. 24, and some initial results on
Barrow image data were shown in Refs. 23 and 25. Since we have two types of learned

Fig. 7 Quilts of dictionary elements learned from Barrow normalized difference indices, for pixel
patches of spatial extent 5 × 5 (first column), 7 × 7 (second column), 9 × 9 (third column), and 11 ×
11 (fourth column). All dictionaries have K ¼ 150 elements; each of the small squares in a quilt
represents a dictionary element. Here we show an (NDVI, NDWI, NDSI) band combination to high-
light spatial texture.
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dictionaries, extracted from multispectral and index band data, each with four different spatial
resolutions, we have a large number of clustering scenarios to consider. One important step is
determining the number of clusters necessary for good classification, from a domain expert point
of view. In this work, a range of fixed number of cluster centers, f4; 8; 10; 12; 15; 20; 25; 30g, is
considered for each of the four spatial resolutions, and few millions of multispectral patches
randomly drawn from the training area are used to learn the cluster centers. The cluster training
performance is evaluated as detailed in Ref. 31, from a quantitative (minimum distance conver-
gence), as well as a qualitative (meaningful grouping of land cover features) standpoint. The
trained cluster centers are used to generate land cover labels at the same spatial pixel resolution
of the original satellite image. Specifically, for every pixel in the image, a clustering classifi-
cation label is given based on its surrounding context (i.e., pixel patch centered on the respective
pixel). In other words, we use a step-size of 1 pixel to extract overlapping patches for classi-
fication and do not extend image borders.

In an ideal case, performance in classification of land cover would be best optimized and/or
evaluated based on domain expert verified pixel-level ground truth. The amount of such training
and validation data would have to be relatively large considering the dimensionality of the sat-
ellite imagery, the complexity of the terrain, and the parameter space of the CoSA algorithm, e.g.,
of the order of thousands up to tens of thousands pixels (at the equivalent WorldView2 reso-
lution). This could be an opportunity for field ecologists to generate such verified ground truth
data. Meanwhile, in the absence of pixel-level ground truth, one way to assess the quality of the
full image land cover labels generated by CoSA is to quantify their resulting intracluster dis-
tances. Table 2 details average intracluster distances for CoSA labels using both types of learned
dictionaries, for the example case of 7 × 7 pixel spatial resolution and the range of cluster centers
considered. The mean and standard deviation of the intracluster distance after full image cluster-
ing are indicative of the degree of fit between the derived cluster centers and the true distribution
of data, and so we desire both small mean intracluster distance, as well as small standard
deviation within the cluster. At the selected pixel patch size in Table 2, both dictionary
types lead to minimum mean intracluster distances at 20 cluster centers (bold values in
Table 2), and the associated standard deviation is minimum in the multispectral dictionary
case and the second smallest in the index dictionary case. Figure 8 summarizes the intracluster
distances for all the four spatial resolutions and for both dictionary types.

The left panel of Fig. 8 shows a wide range of clustering performance for approximations
derived with dictionaries learned from raw multispectral data. For each spatial resolution, the
corresponding minimum intracluster distance is reached with different numbers of cluster cen-
ters, and the standard deviations follow inconsistent patterns. A number of factors likely con-
tribute to this effect, such as the spatial heterogeneity of the landscape, patch size, dictionary
learning algorithm and convergence, and, last but not least, the k-means clustering convergence.
While it is very difficult to quantitatively evaluate how each factor impacts performance, the left
panel of Fig. 8 suggests that some form of data regularization might be beneficial. Assuming that
transformation of the original eight-band image into four derived band difference indices
achieves some degree of desired regularization; the right side of Fig. 8 shows improved and
more consistent cluster label quality, from a mathematical intracluster distance point of
view. With few exceptions, mean and standard deviation of intracluster distances remain

Table 2 Mean intracluster distances after applying clustering of sparse approximations to the
entire image for pixel patch size 7 × 7. For both dictionary types, minimum mean intracluster
distances are obtained for 20 clusters (bold values).

Dictionary
type

Number of cluster centers

4 8 10 12 15 20 25 30

Multispectral
learning

0.365�
0.224

0.995�
0.547

1.090�
0.507

0.753�
0.369

1.330�
0.431

0.127�
0.099

1.279�
0.383

0.194�
0.112

Index
learning

1.733�
0.262

0.392�
0.210

0.361�
0.169

0.406�
0.150

1.870�
0.219

0.272�
0.153

1.379�
0.369

1.732�
0.182
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consistently small for a range of patch sizes and various number of cluster centers. We can only
speculate that the few instances of higher intracluster distance are likely due to the local opti-
mums chosen by the k-means algorithm. A different clustering algorithm, such as expectation-
maximization,35 or a contiguous k-means,36 might lead to more consistent performance.

The final selection of the appropriate number of clusters for each image and at every res-
olution is based on analysis of CoSA results by an environmental domain expert. The expect-
ation is that CoSA would segment the image into categories that preserve the features
and structures visible in the WorldView-2 imagery, and do so better than the unsupervised
classification on raw pixels illustrated in Figs. 3 and 4. We focus on analysis with 20 cluster
centers (rectangular markups in Fig. 8) and explore the corresponding full image CoSA labels.
Figure 9 shows these example clustering results for spatial resolutions of 5 × 5 [Fig. 9(a)], 7 × 7

[Fig. 9(b)], 9 × 9 [Fig. 9(c)], and 11 × 11 [Fig. 9(d)] for multispectral learned dictionaries, and
Fig. 10 similarly shows results for the index learned dictionaries for the four pixel patch sizes.

In the case of multispectral learned dictionaries, based on Fig. 8(a) we expect the most mean-
ingful clustering to occur at 7 × 7 spatial resolution; we expect similar performances for patch
sizes 9 × 9 and 11 × 11; we anticipate the poorest performance at 5 × 5 resolution. Indeed, if we
consider the case of 9 × 9 patch size, we see a lot of label texture in the CoSA analysis [Fig. 9(c)].
The cluster labels seem to capture variations in turbidity levels in water bodies, when compared
to the RGB image in Fig. 2, both in the lakes, as well as in the bay inlets. This sensitivity to
moisture is also evident in the land cover clustering. The dark red labels map to high moisture
content areas, such as low centered polygons and the snow drift on the left side of the image, and
the blue labels correspond to dry areas, typically high centered polygons. When the dictionary
spatial resolution is decreased to 7 × 7 pixels [Fig. 9(b)] the clustering appears to capture the
most meaningful land cover associations. In this case, water turbidity and moisture are no longer
as prevalent in the clustering, and the learning and clustering are more dominated by information
present in other spectral bands (i.e., vegetation sensitive bands). The light and dark blue labels
now correspond to low centered polygonal ground, and the yellows and oranges to high centered
polygons and the associated vegetation (grasses and shrubs). We can observe structure related to
surface soil and vegetative cover, and see some texture directly correlating with polygonal
ground.

In the case of dictionaries learned from normalized band difference indices, Fig. 8(b) indi-
cates improved clustering performance should be expected for all spatial resolutions at 20 cluster
centers, with the exception of the 9 × 9 case, in terms of intracluster mean distance. Visually, the
labels in Fig. 10, indeed, show improved results at the expected resolutions, and for the 9 × 9

case, we see less correlation between labels and structures in the actual image. The CoSA analy-
sis results in much more contiguous blocks for the 5, 7, and 11 patch sizes, and we observe more
meaningful correspondence to land cover (surface soils and vegetation) and geomorphic texture
(polygons) when compared to Fig. 2. The improvement in the case of 5 × 5 spatial resolution
[Figs. 9(a) and 10(a)] is especially encouraging, as pixel patches of small spatial extend are
desirable to reduce edge effects in the CoSA labels, i.e., label blurring. In particular for the

Fig. 8 Mean intracluster distances after applying clustering of sparse approximations to the entire
image using approximations derived with multispectral dictionaries (a) and with index dictionaries
(b), for the four pixel patch sizes. Shown are mean value and corresponding standard deviation for
every number of cluster centers considered.
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Fig. 9 Category labels for Barrow image data using 20 clusters trained on approximations
obtained with dictionaries learned from multispectral data for (a) 5 × 5, (b) 7 × 7, (c) 9 × 9, and
(d) 11 × 11 spatial resolution.
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Fig. 10 Category labels for Barrow image data using 20 clusters trained on approximations
obtained with dictionaries learned from index data for (a) 5 × 5, (b) 7 × 7, (c) 9 × 9, and
(d) 11 × 11 spatial resolution.
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Barrow area, exact label location is needed for polygonal ground structures and shoreline fea-
tures, in order to evaluate and monitor moisture and soil changes.

4.1 Separability of Classes Metric

A quantitative and meaningful metric for clustering can be derived based on intrinsic data prop-
erties, specifically by assessing how individual clusters capture normalized difference index
information. For each pixel in a given cluster, we extract the values corresponding to its
four normalized difference band indices detailed in Sec. 2.2. Effectively, we can now represent
each cluster resulting from CoSA in this four-dimensional space defined by (NDVI, NDWI,
NDSI, NHFD). We choose the three dominant indices, NDVI, NDWI, and NHFD, to visualize
the clusters. Figure 11 shows cluster content scatter plots for 20 cluster centers at two spatial
resolutions, 5 × 5 (left) and 7 × 7 (right), based on the associated CoSA performance illustrated
in Figs. 9(a), 9(b), 10(a), and 10(b). We consider again the case of dictionaries learned from
multispectral data (top) and index data (bottom).

Each sphere in the scatter plots of Fig. 11 represents one cluster, plotted at coordinates given
by the respective mean difference index values and of diameter proportional to the intracluster
mean variance across the three indices. We see clusters are more separated (i.e., better class
separation) and have more uniform variance distribution in the case of dictionaries learned
from difference index bands, compared to dictionaries learned from multispectral data. It is
worth noting that in the case of 7 × 7 pixel patch size, Fig. 11 captures the performance improve-
ment between the two dictionary types much stronger than the error bar plots of Fig. 8, which did
not show drastic performance change at this resolution in the 20 cluster case.

Figure 11 suggests that a more natural metric for estimating cluster convergence may be one
based on normalized band difference information, rather than Euclidian or cosine angle distance
on raw pixel data. This will be explored in more detail in future work. The Barrow data provide
some very useful insight into how landscape heterogeneity impacts the learning and clustering
processes. Figures 9 and 10 illustrate how different landscape features are predominantly learned
and classified at each dictionary spatial resolution, and how preprocessing band data prior to
learning can help reduce label texture. This implies that the CoSA technique can be a viable
multiscale/multiresolution analysis tool. At the same time, this wide range of possible CoSA
label outcomes makes it difficult to apply directly to new data without a human in the loop.

Fig. 11 Scatter plots of clusters as a function of respective mean difference index values; diameter
of spheres is proportional to intracluster mean variance across the three indices.
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The exact purpose of the domain expert must inform the algorithm choices, for example, wide-
area vegetative cover studies might require a larger pixel patch size, while geomorphic studies of
polygonal ground, for example, might require a smaller patch size. One must also account for
any potential edge effects introduced by using patch sizes that are too large. And last, but not
least, information extraction from a satellite image is in a broad sense highly dependent on the
native pixel resolution, and additional issues, such as spectral unmixing, would have to be
addressed for lower-resolution images, e.g., Landsat data. The challenge, therefore, to making
the CoSA method successful for classification in remote sensing will be understanding how to
precondition the learning toward features of interest.

4.2 Aspects of CoSA Implementation and Software Complexity

For most learned dictionary-based applications, there are two separate algorithm components
that need to be separately optimized: the learning stage and the classification stage. Both stages
have some algorithm sections that have low memory demands and are parallelizable, and some
that are computationally intensive and sequential. For our specific data case of high-resolution
multispectral imagery, the memory access demands are significant and must also be considered
in the CoSA algorithm implementation. On the hardware side, we run CoSA using a multiproc-
essor (Intel Xeon X555) Windows 7 64-bit machine, with a total of 32 cores, and have the option
to distribute computing across additional cores on our local cluster. We also were able to inte-
grate the use of an Nvidia Tesla graphic processing unit (GPU) card.

Several implementation approaches were pursued, from all-CPU processing, to mostly
GPU processing, to various combinations in between. Since a few components of the diction-
ary learning algorithm and matching pursuit search do not yet have a Compute Unified Device
Architecture supported implementation, full GPU computation was not possible. The chal-
lenge to implementing the CoSA algorithm, therefore, was to jointly optimize computation,
memory access, and communication time between CPU and GPU. The final implementation
decision was made based on fastest overall computational time and computational scalability
with changes in image size, using MATLAB®’s Profiler. The satellite image to be processed is
typically preloaded on the GPU and then partitioned into large blocks, of the order of tens of
thousands of pixels, which are requested by the CPU as needed. The core of CoSA runs on
CPUs and effectively uses the GPU only for fast access to preloaded images. The two separate
CoSA algorithm components that need to be optimized are the learning stage and the clas-
sification stage.

The learning stage is computationally very expensive, depending on the chosen dictionary
size and the amount of training data available. In our case, this is upfront computational overhead
and can be reduced by the use of parallel computing hardware. At a particular sequential update
iteration, we can scatter the K inner products between data and dictionary elements across multi-
ple cores, resulting in O(LNP) complexity, where L is the sparsity factor, N is the length of a
dictionary element, and P is the number of training data windows. The Hebbian dictionary
update grows linearly with the length of dictionary element (or size of data windows).
During a learning iteration, the CPU will retrieve one image partition at a time, from which
it will randomly select batches of training patches to update the dictionary. The cluster centers
are learned in a similar fashion on the CPU, by iterating over randomly drawn large batches of
image patches (tens of thousands). The total learning stage computational time is of the order of
hours, varying from ∼3 h up to ∼16, depending on the specific dictionary learning setup, i.e.,
number of elements, convergence criteria, learning rate, size of training set, batch size, patch
size, type (index or raw).

In the classification stage, the labeling of the entire image data into land cover categories is
done using a parallel, vectorized implementation. Since our learned dictionaries are typically
undercomplete, i.e., K ≪ N, the search space for estimating sparse approximations for
image patches is reduced, leading to some increase in classification speed. The image partitions
are processed in parallel across multiple CPU cores. Every partition is buffered prior to CoSA
processing, that is, every image patch is reshaped in the associated 1-D vector and the resulting
matrix of thousands of rows is processed at the same time, lowering the communication time
and achieving further improvement from the algorithmic vectorization. Land cover labeling of a
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partition takes, on average, 165.16 s, resulting in an average of 24.77 min for the Barrow data at
3 × 3 partitions.

5 Conclusion

This paper presents an extension of learned dictionary techniques to unsupervised classification
of land cover in multispectral satellite imagery, using CoSA. We show a new dictionary learning
approach based on normalized difference indices, as well as direct learning from multispectral
data. We also explore a quantitative metric based on normalized band differencing to evaluate
spectral properties of the clusters, in order to potentially aid in assigning land cover categories to
the cluster labels. The clustering appears to detect real variability, but some of the associations it
makes could be grouped or are not important for one type of classification versus another (e.g.,
vegetative versus hydrologic studies). A potential CoSA multiscale approach could be successful
in developing a classification scheme that shows vegetation at one scale and topographic features
at another. The end goal of this work is to use CoSA for detecting yearly and seasonal changes in
land cover and soil moisture, which is needed for climate change monitoring over wide areas in
the Arctic. The CoSA derived land cover labels, therefore, need to be correlated by an environ-
mental scientist to actual landscape features, be those vegetative, hydrologic, or geomorphic, and
this is the topic of current investigation. Additionally, we are exploring how to learn dictionaries
and clusters to be scalable to images from the same region in different seasons, and use them for
change detection.
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