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Abstract. The use of bioluminescent reporters in neuroscience research continues to grow at a rapid pace as
their applications and unique advantages over conventional fluorescent reporters become more appreciated.
Here, we describe practical methods and principles for detecting and imaging bioluminescence from live
cells and animals. We systematically tested various components of our conventional fluorescence microscope
to optimize it for long-term bioluminescence imaging. High-resolution bioluminescence images from live neurons
were obtained with our microscope setup, which could be continuously captured for several hours with no signs
of phototoxicity. Bioluminescence from the mouse brain was also imaged noninvasively through the intact skull
with a conventional luminescence imager. These methods demonstrate how bioluminescence can be routinely
detected and measured from live cells and animals in a cost-effective way with common reagents and equip-
ment. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in

whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.NPh.3.2.025001]
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1 Introduction
Conventional optical approaches for live cell imaging have gen-
erally relied on the use of various fluorescent proteins or synthetic
molecules. These imaging techniques typically require an exog-
enous light source to excite the fluorescent molecules, where they
enter a higher-energy state and subsequently emit light of a spe-
cific wavelength as they return to their ground state.1 Fluorescent
molecules have proven to be exquisitely versatile reporters for
live cell imaging because they span a broad spectrum of colors
and can be detected with very high spatial and temporal resolu-
tion. Many important neuroscience questions regarding cellular
anatomic structures, neuronal circuitry, molecular interactions,
brain dynamics, and brain pathology have been addressed with
the use of fluorescent molecules.

In contrast to fluorescence, bioluminescence is light gener-
ated from a chemical substrate and is routinely demonstrated in
nature by various bioluminescent marine species, arthropods,
fungi, and bacteria.2 These organisms generate light via an enzy-
matic reaction, in which a chemical substrate (e.g., luciferin) is
oxidized by an enzyme (e.g., luciferase).2,3 Bioluminescence is
therefore produced without any excitation light source and per-
sists as long as the substrate is present. A variety of biolumines-
cent proteins spanning a broad spectrum of colors and emission
properties have been identified and their genes cloned; the major
ones used in neuroscience research are summarized in Table 1.

Bioluminescence imaging differs from fluorescent readouts
in several aspects that, depending on the specific application,
can be advantageous or disadvantageous. One major advantage
of fluorescent molecules is that they can be far brighter than
bioluminescent proteins;27 they can be made brighter by
simply increasing the amount of excitation light, whereas bio-
luminescence intensity is strictly limited by the number of

substrate molecules being catalyzed by the luciferase. Due to
the relative dimness of bioluminescent proteins, longer exposure
times are generally needed to collect a number of photons com-
parable to that of a fluorescence molecule. Bioluminescence
imaging therefore generally has a limited temporal resolution
compared to that of fluorescence imaging.27

On the other hand, several unique properties of biolumines-
cence make it an attractive imaging modality. First, biolumines-
cent signals generally have a higher signal-to-noise ratio (SNR).
This is due to the fact that background luminescence is negli-
gible compared to the signal produced from the luciferase
reaction.28 Bioluminescent signals can therefore be much
more sensitive than fluorescent signals, which generally have
to compete with background auto-fluorescence.29 Second, bio-
luminescence does not require excitation light, eliminating the
risk of photobleaching and phototoxicity that is associated with
fluorescence imaging.30 Bioluminescent signals are therefore
well suited for live cell imaging and can be recorded for
much longer timescales compared to fluorescent signals without
damaging reporter molecules or cells. Lastly, since biolumines-
cence requires no exogenous excitation light sources, it is a suit-
able optical readout for imaging light-sensitive cells such as
retinal neurons.

Luciferase proteins have undergone significant evolution in
their versatility as genetically encoded reporters for neurosci-
ence research. Similar to their fluorescent counterparts, lucifer-
ase proteins can be targeted to specific regions in the cell with
the use of trafficking or localization signal sequences to allow
for imaging of subcellular structures over time.15 The concept of
fluorescence resonance energy transfer has also been translated
to bioluminescent proteins to measure molecular interactions. In
this instantiation, both the intensity and spectral properties of
bioluminescent proteins are altered when they are associated
with fluorescent proteins in a process termed bioluminescence
resonance energy transfer.31–33 Luciferase proteins have also*Address all correspondence to: Robert E. Gross, E-mail: rgross@emory.edu
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been engineered to respond to small molecules such as
calcium and ATP,15 allowing them to be used for measuring
changes in cellular dynamics such as neuronal activity. Protein
engineering techniques have led to the development of brighter
and longer wavelength luciferases that are well suited for in vivo
imaging.34–38

Given the expanding toolbox of bioluminescent proteins and
their wide variety of applications (see reviews by Badr and
Tannous39 and Saito and Nagai40), it is timely to look at methods
of detection of bioluminescence in laboratories not necessarily
set up for bioluminescence imaging per se or unwilling to
purchase commercially available bioluminescence imagers (e.g.,
Olympus LV200 microscope, IVIS Spectrum animal imager).
In this paper, we discuss advantages and disadvantages of the
various methods we have utilized for detection and quantifica-
tion of bioluminescent signals from live cells and animals.

2 Materials and Methods

2.1 Preparation of Coelenterazine Substrate

The substrate for Renilla- and Gaussia-based luciferases, coe-
lenterazine (CTZ), is typically dissolved in nonpolar solvents
such as ethanol or methanol. These solvents are not ideal for
live cell imaging due to their inherent toxicity. We therefore rec-
ommend solubilizing CTZ in aqueous solution with the help of
inert chemical agents such as β-cyclodextrin as described by
Teranishi and Shimomura41 or by utilizing commercially avail-
able solvents (e.g., Fuel-Inject from Nanolight Technology).
Solutions of CTZ can be made at any desired concentration,
although we routinely use a stock concentration of 600 μM
for in vitro use. After solubilization, CTZ can be aliquoted
and stored at −20°C for several months. Since the amount of
CTZ needed for in vivo applications is relatively higher, we
freshly prepare CTZ before each use following the manufac-
turer’s recommendations. It is important to note that CTZ should
be protected from light to prevent auto-oxidation.

2.2 Cell Culture and Transfection

HEK293 cells were passaged regularly in Dulbecco’s Modified
Eagle Medium (with 10% FBS, 1% penicillin/streptomycin)
and seeded to 90% confluency on glass cover slips the day
before transfection. HEK cells were transfected with expression
vectors encoding membrane-localized Renilla luciferase16

and membrane-localized Gaussia luciferase protein18 using
Lipofectamine 2000 (Invitrogen). Transgene expression was
confirmed by fluorescence microscopy the following day.

Dissociated cortical neuron cultures were derived from E18
rat embryos. Cortical tissue was digested with 2 mg∕mL papain

and dissociated by mechanical trituration before seeding
onto 18-mm diameter German glass coverslips coated with
50 μg∕mL poly-D-lysine (Sigma). Neuronal cultures were
grown in serum-free Neurobasal media (w∕1× B27 supplement,
0.5 mM glutamine) and media was changed (half-volume) every
3 to 4 days. Cortical neuron cultures were transduced with viral
vectors encoding luciferase 2 to 3 days after plating.

2.3 Live Cell Bioluminescence Imaging

Bioluminescence images were taken on an Olympus inverted
fluorescence microscope equipped with a variety of objectives,
c-mount adaptors, and cameras (Table 2).

Cells cultured on glass coverslips were transferred to a perfu-
sion chamber (Warner Instruments) containing phenol-free media
at the time of imaging to minimize light absorption and maximize
transmission of bioluminescence through the media (this is espe-
cially important for upright microscopes). The cells were then
checked under fluorescence to confirm transgene expression
and determine the right depth of focus for bioluminescence
imaging. The microscope was then switched to an empty filter
position to collect whole-spectrum bioluminescence.

Images were collected using the open-source Micromanager
image acquisition software. Camera settings were standardized
and optimized by cooling the chip to the lowest temperature (to
minimize dark current) and maximizing the gain. Binning was
used only when it was necessary to produce visible images. All
of the background light sources in the room (windows, doors,

Table 1 Summary of major bioluminescent proteins used in neuroscience research.

Protein Species Emission peak Mg, ATP? Substrate References

Luciferases FLuc Firefly 560 Y D-Luciferin 4–14

VLuc Cypridina noctiluca 460 Y Vargulin luciferin 5

RLuc Renilla reniformis 480 N Coelenterazine 8,15–17

GLuc Gaussia princeps 480 N Coelenterazine 5,18,–21

Photoproteins Aequorin Aequorea victoria 470 N Coelenterazine 22–26

Table 2 Objectives, adaptors, and cameras tested.

Objectives Adaptors Cameras

PlanApo 60× oil, 1.4NA 0.5× Coolsnap-ES CCD
(Photometrics)

UPlanFl 40× oil, 1.3NA 0.3× Coolsnap-FX CCD
(Photometrics)

LUMPlanFLN W 60×, 1.0NA ImagEM C9100-13
EMCCD (Hamamatsu)

UPlanSApo 20×, 0.75NA iXon Ultra 897 EMCCD
(Andor)

LucPlanFL 60×, 0.7NA QuantEM EMCCD
(Photometrics)

OptiMOS sCMOS
(Photometrics)
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and electronics) were covered with blackout material and
images were collected at various exposure times (1 to 40 s).
Long-term bioluminescence images were acquired using the
multiacquisition feature of Micromanager and a perfusion sys-
tem to deliver CTZ during the imaging period (up to 3 h).
Imaging was done under controlled conditions that included
using the same batch of transfected cells, CTZ concentration,
media, exposure times, and imaging conditions to reduce vari-
ability between experiments. We did not attempt to normalize
bioluminescence signals between different sets of experiments,
although we employed the same camera settings (i.e., exposure
time and binning) for a given combination of the microscope,
camera, objective lens, and luciferase used. Thus, the biolumi-
nescence signal was comparable within a given set of the
experiments.

For the comparison of camera models in Fig. 3, biolumines-
cence imaging was repeated using an upright microscope (Eclipse
E600-FN, Nikon) and a water-immersion objective lens
(40×, NA 0.8). CTZ was applied to the same batch of HEK
cells transiently transfected with a membrane-bound Gaussia
luciferase cultured on glass coverslips. Images were taken
every 5 s with exposure time of 4.5 s and CTZ (100 μM) was
bath-applied 50 s after the start of an imaging session. The camera
models compared were Photometrics CoolSNAP ES [noncooled
scientific charge-coupled device (CCD); digitization: 12 bit; gain
0.3×], Photometrics CoolSNAP fx (cooled scientific CCD;
digitization: 12 bit; gain 2×), Hamamatsu ImagEM C9100-13
(EMCCD; digitization: 16 bit; EM gain: 1200×), and Andor
iXon Ultra 897 (EMCCD; digitization: 16 bit; EM gain
1000×). Each camera was binned to roughly 256 × 256 pixels,
resulting in a similar pixel size of 25.8 μm (CoolSNAP ES),
26.8 μm (CoolSNAP fx), 32 μm (ImagEM), and 32 μm (iXon
Ultra 897).

Image quality was estimated by calculating the SNR of
captured images at the peak luminescence time point. SNR
was calculated by dividing the mean pixel intensity of the
bioluminescence image to the standard deviation of the pixel
intensity from a background image (or region with no cells)
in ImageJ.

2.4 In Vivo Bioluminescence Imaging

For imaging the mouse brain, an adeno-associated virus (AAV)
encoding Renilla luciferase (RLuc) was injected into the cortex
(−1.58 AP, −0.75 ML, −0.8 SI, and −1.58 AP, −1.75 ML,
−0.5 SI) of 5- to 6-week old CD1 white mice (Harlan). After
2 weeks, the fur was shaved off the head and the animals
were anesthetized with ketamine/xylazine before biolumines-
cence imaging. 500 μg of CTZ was administered either intra-
peritoneally or intravenously (via tail vein injection).
Bioluminescence images were captured with the animals still
under ketamine/xylazine anesthesia using a conventional lumi-
nescence imager (Fuji LAS-3000). Sequential images of 20 s
exposure time were captured and the total signal intensity of
each image was quantified in ImageJ to achieve a biolumines-
cence signal time course. Images at the time of maximum signal
intensity are displayed showing the relative bioluminescence
signal pseudocolored by a RGB lookup table in ImageJ. All pro-
cedures were performed in accordance with the US National
Institutes of Health guidelines for animal research and were
approved by the Institutional Animal Care and Use Committee
at Emory University.

3 Results and Discussion

3.1 Live Cell Bioluminescence Imaging

Image brightness is directly related to the light-gathering power
of the objective (numerical aperture, NA) and inversely related
to the image magnification (M): brightness ∝ (NA/M).2 We have
therefore maximized the image brightness of our samples by
optimizing three components of our microscope: the objective,
camera, and intermediate optics.

In selecting an appropriate objective lens for biolumines-
cence imaging, we aimed at finding one with the highest NA
and lowest workable magnification. In comparing various objec-
tive lenses, we found that objectives with higher NA produced
brighter, higher resolution images [Figs. 1(a2) versus 1(a1)].
Lower magnification objectives were also able to produce
higher resolution images [Figs. 1(b2) versus 1(b1)].

We utilized an intermediate demagnifying lens on a camera
mount in order to allow more light to be focused onto a smaller
area of the camera chip. Each pixel in the illuminated area of the
chip therefore receives more light, producing a brighter image.
We found that greater demagnification produced brighter
images with sufficient spatial resolution to visualize detailed cel-
lular morphology [Figs. 2(a) versus 2(b)]. Note that silhouetting
at the periphery of the image may occur with greater demagni-
fication, so the field of view requirements must be carefully
considered.

There are numerous camera options currently available for
low-light optical imaging. CCD cameras are the most popular
choice and rely on the photoelectric effect to convert a light sig-
nal into an electrical signal. The readout noise of CCD devices
was significantly reduced with the advent of electron multiply-
ing charge-coupled devices (EMCCD), making these cameras

Fig. 1 Objective lens comparison. Bioluminescence images from
cultured HEK cells expressing Gaussia luciferase (a1 and a2) and
Renilla luciferase (b1 and b2) with the following objectives: (a1)
LUCPlanFL 60× 0.7 NA, (a2) LUMPlanFLN/W 60× 1.0 NA for com-
parison of NA, (b1) UPlanFl 40× oil 1.3NA, and (b2) UPlanSApo 20×
0.75 NA for comparison of different magnification together with NA.
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especially well suited for low-light imaging applications.
Scientific CMOS (sCMOS) devices are a relatively new type
of sensor that also offers extremely low readout noise and wide
dynamic range, making them a cost-effective alternative for im-
aging in low-light conditions. We have therefore compared sev-
eral CCD, EMCCD, and sCMOS cameras for bioluminescence
imaging (Fig. 3). All of the cameras tested were able to produce
bioluminescence images with relatively low background and
short exposure times (1 to 10 s). Even though EMCCD cameras
generally outperform sCMOS devices at very low light levels,
our images were qualitatively similar (most likely due to the fact
that RLuc and GLuc are relatively bright luciferases). One
should therefore select a camera based on the level of sensitivity
required, as the price differences between EMCCD, sCMOS,
and CCD cameras can be quite significant.

Due to the relatively long-exposure times required for bio-
luminescence imaging, we found that it was important to reduce
the amount of ambient light in the room as much as possible to
reduce background noise. We routinely turned off or covered
light sources (such as an arc lamp for fluorescence observation)
near the microscope before bioluminescence imaging. We found
that blackout curtains were especially effective at isolating the
microscope and camera from any potential light contamination.
Cooling the camera to the lowest temperature setting also helped
reduce background by limiting dark current noise.

The danger of phototoxicity and photobleaching limits the
effectiveness of long-term live-cell imaging with fluorescent mol-
ecules. In contrast, we have demonstrated that bioluminescent
reporters can be used to image live cells for extended periods
of time without any apparent adverse effects (Fig. 4). The sub-
strate was supplied by a perfusion system, resulting in a long-last-
ing bioluminescent signal which could be detected over several
hours. We did not observe any apparent adverse effects during
this period, making this approach suitable for imaging cellular
processes that are directed over long timescales, such as cellular
trafficking, synaptogenesis, and migration.

3.2 In Vivo Bioluminescence Imaging

In vivo fluorescence imaging is often compromised by high non-
specific background from tissue and cells (auto-fluorescence).
In contrast, background bioluminescence from tissues not
expressing luciferase is negligible. This property of biolumines-
cence makes it an ideal signal for imaging whole animals where
the number of luciferase-expressing target cells is generally
few compared to the surrounding non-expressing tissue. We
assessed the usability of Renilla luciferase for in vivo imaging

Fig. 2 Intermediate lens comparison. Bioluminescence images of dis-
sociated cortical neuron cultures expressing Renilla luciferase using
a 0.3× intermediate lens (a) and a 0.5× intermediate lens (b). Both
images were taken with an UAPO 40× 1.35NA oil objective and
a sCMOS (OptiMOS, Photometrics) camera.

Fig. 3 Camera comparison. Bioluminescence images of HEK293 cells transfected with Gaussia lucif-
erase taken with various cameras: (a) Noncooled scientific CCD (Coolsnap-ES, Photometrics); (b) cooled
scientific CCD (Coolsnap-FX, Photometrics); (c): EMCCD (ImagEM C9100-13, Hamamatsu); (d):
EMCCD (iXon Ultra 897, Andor). Contrast was adjusted for each camera using the highest and lowest
intensity obtained in each camera. (e) Average SNR calculated at the time of peak luminescence for each
camera.
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and found that the bioluminescence signal was strong enough to
allow detection of signals through the intact skull [Figs. 5(a) and
5(b)]. Special consideration of the route of substrate administra-
tion is needed when selecting a luciferase to use for in vivo
bioluminescence imaging. Firefly luciferase (Fluc) has been
frequently used for bioluminescence imaging in animals due
to the relatively ease of the intraperitoneal route of substrate
(D-luciferin) administration. Although we have demonstrated
that coelenterazine can also be delivered intraperitoneally,
Renilla luciferase is maximally effective when the substrate is
administered via intravenous routes [Fig. 5(c)]. This may be

due to the fact that the bioavailability of substrate in the brain
is reduced when it is administered intraperitoneally, where it
needs to drain through the lymphatic system before entering
the bloodstream. Since beetle (e.g., firefly) and marine (Renilla,
Gaussia) luciferases utilize different luciferin substrates, it is
therefore feasible to multiplex them together due to absence
of crosstalk between the two systems.

The low background with bioluminescence makes in vivo
bioluminescence imaging particularly sensitive for detecting
signals from small areas over extended periods of time. In
fact, bioluminescence imaging has been successfully used for
applications from tracking transplanted cells42,43 to monitoring
cellular processes such as neurodegeneration, inflammation, and
neurogenesis.44 Although in vivo bioluminescence signals pro-
vide limited spatial information directly, the cell-type specificity
of luciferase expression provides indirect spatial information
because any detected bioluminescence should ostensibly be
coming only from cells expressing luciferase.

4 Conclusion
We have demonstrated how bioluminescent proteins can be
effectively used as an optical reporter for both in vitro and in
vivo settings. Given the proper detection equipment and scien-
tific question, bioluminescence offers several unique advantages
over conventional fluorescence readouts. The major advantage
of using bioluminescent signals is that they are detected over
little to no background noise, enabling long term imaging appli-
cations with no risk of phototoxicity or artifact. With the devel-
opment of brighter and more responsive luciferase proteins, the
use of bioluminescent reporters in neuroscience research will
continue to grow more robust and versatile.
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