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Abstract. An automated dual-resolution serial optical coherence tomography (2R-SOCT) scanner is devel-
oped. The serial histology system combines a low-resolution (25 μm∕voxel) 3× OCT with a high-resolution
(1.5 μm∕voxel) 40× OCT to acquire whole mouse brains at low resolution and to target specific regions of inter-
est (ROIs) at high resolution. The 40×ROIs positions are selected either manually by the microscope operator or
using an automated ROI positioning selection algorithm. Additionally, a multimodal and multiresolution registra-
tion pipeline is developed in order to align the 2R-SOCT data onto diffusion MRI (dMRI) data acquired in the
same ex vivo mouse brains prior to automated histology. Using this imaging system, 3 whole mouse brains are
imaged, and 250 high-resolution 40× three-dimensional ROIs are acquired. The capability of this system to
perform multimodal imaging studies is demonstrated by labeling the ROIs using a mouse brain atlas and by
categorizing the ROIs based on their associated dMRI measures. This reveals a good correspondence of
the tissue microstructure imaged by the high-resolution OCT with various dMRI measures such as fractional
anisotropy, number of fiber orientations, apparent fiber density, orientation dispersion, and intracellular volume
fraction. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.NPh.5.4.045004]
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1 Introduction
Automated blockface histology is a maturing imaging technol-
ogy that combines a tissue slicing apparatus, a motorized sample
stage, and a microscope in order to image whole samples in
three-dimensional (3-D) at high resolution. The common prin-
ciple shared by all serial blockface histology methods is the
repeated removal of small tissue layers to reveal new sample
cross sections. This destructive imaging approach circumvents
the limited penetration depth of light in tissue, and the motorized
stage enables the acquisition of entire sample cross sections
even with an imaging system using limited field-of-view
(FOV) optics. Advantages of blockface imaging include the
low quantity of sample deformation introduced by the tissue
slicing process, its simple sample preparation protocol, and
overall short acquisition time when compared to other serial
histology methods such as serial histopathology1 or serial elec-
tron microscopy.2,3 In neuroimaging, automated blockface his-
tology was reported with various optical modalities, ranging
from confocal microscopy,4 fluorescence two-photon micros-
copy,5–7 CARS microscopy,8 optical coherence tomography
(OCT),9 polarization sensitive OCT,10–13 and photoacoustic
microscopy.14 Serial histology was used to study myelinated
fibers,15,16 the neuronal connectome,7,17 the neurovasculature,18

Alzheimer’s disease,19 etc.
When designing a serial histology system or when perform-

ing an imaging study with such a system, a key aspect to

consider is the imaging resolution. Using the tissue intrinsic
contrast, high-resolution OCT can resolve fine tissue micro-
structure, such as the neuronal cell bodies20 and individual
myelinated fibers21. Despite this advantage, high-resolution
objectives are used at the expense of longer acquisition
times, dataset size increase, as well as more complex and re-
source-intensive data reconstruction. For example, to acquire
an entire mouse brain with a 40× objective offering sampling
resolution of 1 μm over FOVs of 0.5 × 0.5 × 0.25 mm3

would require an estimated acquisition time of 60 days with
our current serial OCT imaging system9 and would necessitate
around 700 TeraBytes (TB) of disk space to store the dataset. On
the other hand, low-resolution objectives offer the advantage
of faster acquisition time and small dataset size at the
expense of sacrificing tissue microstructure feature detectability.
Nonetheless, low-resolution serial histology is sometimes desir-
able. In previous work, a serial OCT system9 was used with a 3×
objective to perform whole mouse brain acquisitions at a reso-
lution of 15 μm per voxel. The assembled SOCT mouse brains
were then exploited to compute an average mouse brain tem-
plate,22 which was coregistered to diffusion MRI (dMRI)
brain data. The relatively poor resolution of the SOCT data
did not allow for direct brain microstructure visualization, but
the images are still useful in animal group studies23–25 and
brain-wide investigation of the origin of OCT contrast in neuro-
nal tissue. To take advantage of both the fast acquisition and
reconstruction aspects of low-resolution serial histology and
of the additional information provided by high-resolution
OCT, a dual-resolution serial OCT scanner (2R-SOCT) was
developed in this work. This system was then used in a
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multimodal study demonstration to compare the high-resolution
OCT images acquired automatically with the 2R-SOCT imag-
ing pipeline with dMRI data acquired in the same mouse
brains prior to serial histology. Note that this paper is an
extended and revised version of a conference proceeding26 pre-
sented at the SPIE Photonics West-BiOS conference in
February 2018.

2 Methodology

2.1 Animal Sacrifice and Tissue Preparation

For this study, the Animal Research Ethics Committee of the
Montréal Heart Institute approved all surgical procedures in
accordance with the Canadian Council on Animal Care recom-
mendations. A total of n ¼ 3 C57Bl/6 mouse brains were used.
At sacrifice, the mice were anesthetized with 2% to 3% isoflur-
ane and perfused transcardially with 20 ml phosphate buffered
saline and then by a mixture of 4% paraformaldehyde (PFA)
with 1% gadolinium (Gadovist) to reduce the T1 decay time
and thus accelerate the dMRI acquisitions. Each mouse head
was separated from its body and the skull was cleaned to remove
muscles, lower jaw, vertebrae, and other tissues. The brain/skull
was imaged in Fomblin with a multi-b-value high-angular res-
olution diffusion imaging (HARDI) MRI sequence described
in the next section. After a dMRI acquisition, the brain was
extracted from its skull and was embedded in a 4% agarose
cylindrical block for serial imaging. All brains were positioned
with the cerebellum facing up toward the microscope objective,
such as the vibratome cuts were parallel to the brain’s coronal
plane. The agarose gel was oxidized to create covalent cross
links between the embedding medium and brain tissue, thus
avoiding some cutting related artifacts such as tissue separation
during the serial histology acquisition. A drawback of the oxi-
dation procedure is that it renders the agarose brittle, which can
cause structural damages while slicing with the vibratome. To
avoid this effect, the 4% oxidized agarose cylindrical blocks
were embedded in larger unoxidized agarose cylinders that
provided better structural support. The agarose preparation and
oxidation procedures followed the methodology presented by
Ragan et al.5 In between tissue preparation steps and imaging
sessions, the samples were kept in 4% PFA at 4°C.

2.2 Diffusion MRI Acquisition and Analysis

All fixed mouse brains were imaged prior to serial histology
with a standard 3-D spin echo diffusion MRI sequence,27

using an Agilent 7-Tesla scanner equipped with 600 mT/m gra-
dients and a custom-built 1-loop cylindrical coil (17-mm diam-
eter, 20-mm long). The dMRI sequence parameters were:
TE ¼ 0.022 s, TR ¼ 0.4 s, 70 gradient-encoding directions
separated into 3 shells (6 directions with b ¼ 400 s∕mm2, 15
directions with b ¼ 1066 s∕mm2, 42 directions with b ¼
2000 s∕mm2 and 7 interlaced acquisitions with b ¼ 0),
δ ¼ 5 ms,Δ ¼ 12 ms, gradient amplitude 312.5 mT/m, FOV ¼
16 × 12 × 8 mm, and an acquisition matrix of 128 × 96 × 64
giving an isotropic resolution of 125 μm, for a total acquisition
time of 48 h. In order to obtain uniform angular coverage, the
HARDI acquisition was designed using a generalization of
electrostatic repulsion to multishell.28

The dMRI data preprocessing consisted in multiple registra-
tion, segmentation, and denoising steps as follows. First, all
diffusion weighted images (DWI) and their associated b-vectors

were coarsely rotated by π∕2 angle increments until they were
aligned with the neurological display convention. Then the first
b0 volumes of each DWI brains were extracted and used to com-
pute an average anatomical brain template. This made use of the
open source toolkit advanced normalization tools (ANTs29) and
an iterative optimal shape and appearance template construction
method.30 This optimal anatomical template was further aligned
to the publicly available DSURQE T2-weighted ex vivo mouse
brain template31 using rigid transformations. All DWI data were
finally aligned to the anatomical template using rigid transfor-
mations, and the same rotations were applied to their associated
b-vectors.

Most preprocessing algorithms and dMRI analysis per-
formed in this study required brain extraction. This was per-
formed using the “antsBrainExtraction” procedure provided
in the ANTs toolkit and implemented in the Nipype neuroimag-
ing data processing framework.32 The resulting brain masks
were inspected in 3DSlicer33 to remove any segmentation errors.
The remaining diffusion MRI preprocessing steps were per-
formed to reduce noise and imaging artefacts.34 These correction
steps included eddy current and sample bulk movement com-
pensation,35 correction of the field homogeneity artefacts,36

reduction of the Rician noise bias,37 and an in-house time-vary-
ing signal bias compensation procedure, which is described in
the Appendix.

Three dMRI analyses were performed on the data. First, in-
house implementations38,39 of diffusion tensor imaging and
HARDI reconstructions were performed using the Dipy
library.40 Fractional anisotropy (FA) was computed from the
local diffusion tensors with a non-negative least square method.
The constrained spherical deconvolution with spherical
harmonics (order 6) of Dipy38,41 was used to reconstruct the
fiber orientation distribution functions (fODF). The principal
directions of diffusion in each voxel and the maximum of the
apparent fiber density (AFD_max)42,43 were extracted from
the fODF. AFD_max is the maximal value of the fODF on
the sphere, and it can be interpreted as the AFD_max. The num-
ber of fiber orientations (NuFO) within a voxel was computed
with the method presented by Dell’Acqua et al.39 and using a
data-driven threshold set to 1.5 times the AFD_max values in
the ventricles. The last dMRI analysis performed was the
neurite orientation dispersion and density imaging (NODDI)
procedure.44 The AMICO python implementation45 of the
NODDI model was used, with isotropic diffusivity diso ¼
1.0 × 10−3 mm2∕s, longitudinal diffusivity dk ¼ 0.6 ×
10−3 mm2

s
, and regularization parameters λ1 ¼ 0.5 and

λ2 ¼ 1.0 × 10−3. Furthermore, the AMICO ex vivo option
was used, which adds a fourth constrained water compartment
to the NODDI model. This represents the water trapped by the
tissue fixation. The choice of ex vivo diffusivity values for the
isotropic and intracellular compartments was guided by pre-
vious values used in the literature.44–46 The NODDI fitting
procedure resulted in two maps: orientation dispersion (OD)
and the intracellular volume faction (IC_VF), which describes
the water diffusion trapped within the axons and dendrites and
that is usually interpreted as the neurite density.

2.3 Dual Resolution Swept-Source Serial OCT

A dual-resolution swept-source serial optical coherence tomog-
raphy (2R-SOCT) microscope was developed (Fig. 1). This
system is based on our previous single-resolution serial OCT
design.9 The setup consists of three main components: (1) a
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fiber-based Michelson interferometer, (2) dual-resolution free-
space sample and reference arms, and (3) an automated histol-
ogy apparatus. The fiber-based Michelson interferometer input
was a swept-source laser operated at a central wavelength of
λ0 ¼ 1310 nm with a tuning bandwidth of Δλ ¼ 100 nm

(Axsun, 1310 Swept Source Engine). The swept-source laser
generated a k-clock used to trigger the OCT volume scans
and to acquire interference fringes, which are linearly distributed
wavenumbers. The swept-source laser output was coupled to a
90/10 fiber coupler (Thorlabs, FC1310-70-10-APC); 90% of the
laser power was targeted toward the sample arm and 10% to the
reference arm. Single-mode fiber optical circulators (Thorlabs,
CIR-1310-50-APC) were used in each arm to guide the laser
output toward the sample and reference arms using fiber-
optic collimators, and then to collect the output coming from
each arm and send it toward the photodetector. A polarization
controller (General Photonics, PolaRITE PLC) was used in the
reference arm to adjust the contrast of the back reflected light
interference fringes. The reference and sample signals were
combined in a 50/50 fiber coupler (Thorlabs, FC1310-70-
50-APC) and sent to a balanced photodetector (Thorlabs,
PDB120C-AC). The interference fringes were recorded on a
computer using a fast 12 bit waveform digitizer (Alazartech,
model ATS9350, 500 MS/s).

The fiber-based Michelson interferometer outputs were con-
nected to dual-resolution free-space sample and reference arms
by fixed focus fiber collimators (Thorlabs, F280APC-C). The
laser beam was scanned laterally with a small beam diameter
galvanometer system (Thorlabs, GVS002). For low-resolution
imaging configuration, the galvanometer mirrors’ output was
sent directly to a 3× telecentric scanning lens (Thorlabs,
LSM04 Scan Lens) using two optical lenses (L1 and L2;3X)
in a telescope configuration. The 3× objective was enclosed in
a custom-made watertight immersion chamber terminated by a
wedged optical window (Thorlabs, WW11050-C). This immer-
sion chamber had two purposes: (1) protect the scanning lens
from the water and biological tissue debris created by the slicing
process and (2) impose a constant air/water column in the sam-
ple arm. For high-resolution imaging configuration, a motorized
flip mirror (Thorlabs, MFF101/M) was introduced between the

first and second lenses of the 3× telescope. The laser beam was
thus deviated into a second arm and a second telescope lens
(L2;40X), to end up in a 40× water-dipping microscope objective
(Nikon, N40×-NIR). The telescope lenses focal lengths
(L1 ¼ 60 mm, L2;3X ¼ 75 mm, and L2;40X ¼ 125 mm), the dis-
tance between the 3× and 40× arms (D ¼ 50 mm) and the
immersion chamber height (H ¼ 40 mm) were optimized
based on the target microscope objective aperture and on the
axial distance between the 3× and 40× planes. As a result,
the low-resolution objective focal plane was located 6.5 mm
above the high-resolution focal plane. The free-space reference
arm could be switched between 3 × ∕40× arms in a similar man-
ner using a motorized flip mirror. Dispersion compensation
prisms (Thorlabs, PS908L-C) were located in each reference
arm to physically compensate for optics induced light
dispersion. Additionally, an objective specific dispersion com-
pensator (Thorlabs, LSM04DC) was added to the 3× reference
arm. Finally, variable neutral density filters were added to con-
trol the intensity of the measured interference fringes. The
motorized flip mirrors were controlled directly by the acquisi-
tion computer via USB and the galvanometer system was con-
trolled with a data acquisition card (National Instrument, NI-
USB-6351).

The automated histology apparatus was the last component
of this dual-resolution serial OCT system. The sample was
placed in a water-filled acrylic glass container and was main-
tained in place using a custom-made 3-D printed sample holder.
The focus depth position within the tissue was initialized by first
manually adjusting the sample stage height until the tissue
appeared in a live OCT B-scan. Then the focus depth was
set automatically using the Fibonacci search method.47 The met-
ric that was optimized was the average intensity within an A-line
at the center of the lateral FOV. The Fibonacci search method
was effectively aligning the 3× focal plane with the tissue sur-
face. This automatic focus depth optimization was done only
once at the beginning of the acquisition. Automated serial im-
aging was achieved by sequentially cutting thin tissue slices
(around 200 μm) with a vibrating blade and by moving the sam-
ple under the microscope objective with a motorized stage
(Zaber, T-LSR150B). At each motor position, the sampling

Fig. 1 Main components of the dual-resolution serial OCT setup. FC, fiber coupler; COL, collimator; PC,
polarization controller; BPD, balanced photodetector; FM, motorized flip mirror; DCC, dispersion com-
pensation cube; ODC, objective dispersion compensator; ND, variable neutral density filter; M, mirror;
ADC, analog-digital converter; FPGA, field-programmable array; and DAQ, data acquisition card.
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beam was raster scanned over the objective FOV using galva-
nometric mirrors. An OCT A-line was acquired for each lateral
sampling point, thus resulting in a mosaic of volumetric OCT
tiles for each tissue slice. To reduce the total acquisition time, no
A-line or volume averaging (spatial compounding) was per-
formed. An overlap fraction of 20% was chosen between neigh-
boring tiles. This overlap size was sufficiently large to always
have enough tissue shared between neighboring tiles while lim-
iting the quantity of data and increase in acquisition time when
the overlap fraction is larger. After a slice acquisition, the sample
was moved axially using a motorized jack (Thorlabs, L490MZ/
M), and this process was repeated until the whole tissue was
sliced and imaged. The vibratome, XY stage, and Z labjack
were all computer controlled using serial port communication.

Using python, the OCT volume reconstruction was achieved
during the acquisition. After each OCT volumetric tile acquis-
ition by the waveform digitizer, the data were transferred
directly into memory. The reference interference fringe was
computed from the data as the average fringe for a given tile,
and this reference was then subtracted from the measured signal.
To limit the side lobes introduced by the wavelength swept-
source profile, a Gaussian apodization function [μ ¼ 1310 nm,
σ ¼ 20 nm, which corresponds to a point-spread function (PSF)
of FWHM ¼ 7.5 μm] was multiplied with each fringe. The
A-lines at each raster scan position were obtained by computing
the inverse Fourier transforms of the preprocessed signal. Only
half of the axial range of the reconstructed volumes was
recorded due to the Hermitian nature of real-valued signals.
The volumes were recorded on a hard disk drive using the
Nifti1 file format. In order to reduce the acquisition time, the
high-resolution OCT volumes acquired with the 40× objective
were reconstructed offline, i.e., after the serial histology
acquisition.

2.4 Whole Brain OCT Volume Reconstruction

The data reconstruction method used to assemble the low-res-
olution OCT volumetric tiles into a single 3-D brain was pre-
sented in a previous publication.9 A key difference with our
previous reconstruction model is that the precise tile positions
were recorded during the acquisition for each volume, and these
positions were used for the reconstruction instead of those given
by registration. This modification accelerates the data acquisi-
tion and reconstruction procedures, and it provides a common
reference frame for the dual-resolution acquisition paradigm
described in the next section. Using the recorded XY tile posi-
tions, diffusion-based blending weights were computed for each
overlap areas between neighboring tiles and were used to stitch
the images together. Then the tissue attenuation coefficient was
estimated from the data using a single-scattering model com-
bined with the confocal axial PSF of the system. The extracted
attenuation coefficients were used to compensate the depth-
dependent OCT contrast in tissue. The axial translation between
consecutive tissue slices was given by the labjack motor micro-
step position. Using these recorded positions, the slices were
assembled into a single brain volume using 3-D diffusion-
based blending weights. The tissue masks used for the whole
brain reconstruction were optimized to ensure an overlap thick-
ness of about 100 μm between consecutive slices. The whole
brain reconstruction procedure was performed at an isotropic
resolution of 25 μm per voxel.

2.5 Dual-Resolution Acquisition and Reconstruction

Two types of dual-resolution acquisitions were performed:
(1) fixed focus 40× OCT mosaic acquisitions and (2) dynamic
focusing 40× OCT acquisitions, also known as optical coherence
microscopy (OCM). In order to define the regions of interest
(ROIs) to be imaged, we developed a custom graphical user inter-
face (GUI), which allowed the visualization of the last acquired
brain slice as an average intensity projection (AIP) image. The
displayed AIP, which was assembled during the acquisition,
was located within the GUI viewport at its accurate Cartesian
position given by the recorded motor positions. Using the
GUI, any number of ROIs could be added by the microscope
operator using either 0.5-mm width square ROIs for the OCM
acquisitions or multiple connected line segments ROIs for the
fixed focus mosaic acquisitions. The polygon defined by the
closed-shaped polyline ROIs was converted into mosaics of
0.5-mm square tiles with 20% overlap fraction between adjacent
tiles. Each ROI characteristics could be modified within the GUI,
including the axial position of the first focal planewithin the brain
tissue, the axial thickness of the OCM acquisition, the spacing
between consecutive OCT acquisitions, etc. For this study, the
ROIs were defined manually using the GUI for one brain.

A second automatic ROI selection strategy, shown in Fig. 2,
was employed for the two other brains. The ROI locations were
generated randomly for a given slice by first computing a mask
of the tissue within the AIP. The mask was computed using the
tissue AIP by denoising the images with a bilateral filter and
then by separating the pixels into two classes with the Otsu
thresholding method. The resulting mask was denoised with
a median filter and holes were filled with a morphological
hole filling filter. The tissue mask was used to distinguish tissue
pixels from agarose or water pixels. Then a two-dimensional (2-
D) bias probability map was generated to guide the random ROI
selection toward fibers and tissue areas exhibiting large contrast
variations. The 2-D bias probability map was generated by sum-
ming the normalized tissue AIP with the normalized pixel inten-
sity deviation from the average pixel intensity within the tissue
mask. This image feature map was smoothed with a Gaussian
filter of kernel size equals to 75 μm and was normalized by the
sum of all features within the tissue mask. Low-probability val-
ues were representative of tissue areas with low-OCT reflectivity
and where the intensity was close to the average tissue intensity.
High-probability values were representative of tissue areas with
high OCT reflectivity or where the intensity was either larger or
lower than the average intensity within the tissue mask. To avoid
acquiring images outside brain tissues, only ROI positions
located within the segmented tissue and at least 250 μm from
the agarose/tissue boundary were kept. Also a parameter was
used to control the maximum overlap/minimum margin between
any pairs of ROIs. To select the ROI positions based on the prob-
ability map, a list of valid ROI positions was generated from the
tissue mask, and each position was associated with a probability
as computed above. Then the “random.choice” method of the
Numpy python package was used to select a position. The auto-
matic ROI selection was performed every four slices. The whole
automatic ROI selection algorithm, including 2-D stitching of
the previous tissue slice acquired with the 3×-SOCT, tissue seg-
mentation, probability map generation, and ROI position selec-
tion took 4 s per slice. The purpose of random ROIs selection
was to show that the 2R-SOCT imaging pipeline can be fully
automated, which results in reduced total acquisition time
and also in less user-bias in the choice of ROIs.
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Once all ROIs were selected for a given slice, the automatic
dual-resolution acquisition began. For the OCM acquisitions,
the sample was first moved to its 3× ROI Cartesian position
and a small volume with the same 40× OCM ROI FOV was
acquired. Then the sample was moved to its corresponding
40× position using the calibrated displacement between the
3× and 40× arms. The water/tissue interface was found auto-
matically by acquiring multiple low sampling resolution 40×
OCT volumes distanced axially by 50 μm and by detecting
the axial position associated with the maximum value when con-
volved axially with the first derivative of a Gaussian. This was
followed by an automatic focus depth fine-tuning using the same
Fibonacci search method as for the serial histology focus depth
initialization described for the 3× OCT. Once the water/tissue
interface was located, the initial axial position was set and multi-
ple 40× OCT volumes were acquired within the brain, separated
axially by 16 μm. The interference fringe data were recorded on
the computer for later offline OCM reconstructions. After the
40× dynamic focusing acquisition, the sample was moved
back to the 3× arm, and the dual resolution acquisition contin-
ued with the other ROIs defined for this slice. The acquisition
procedure for the dual-resolution fixed focus mosaics was sim-
ilar, with the exception that multiple 40× OCT volumes were
acquired at a single axial position and that the center of the
mosaic was used to find the water/tissue interface for the
whole dataset. The high-resolution OCM volumes were
assembled from the sequences of OCT volumes acquired at
multiple sample heights. The OCT volumes were blended
together using the Gabor-based fusion methodology.48 The
reconstruction was performed at a sampling resolution of
1.5 μm per pixel. Due to the small wavelength bandwidth of
the swept-source laser, the axial resolution was much lower
than the lateral resolution, limiting the subsequent OCM
image analyses to 2-D en face planes only.

2.6 Multimodal and Multiresolution Registration

The precise alignment of the OCT and dMRI data is crucial in
order to compare these imaging modalities. In previous
works,9,23,49 we developed a multimodal registration procedure

to map the assembled 3×OCT brains onto MRI images acquired
on the same ex vivo samples prior to serial histology. This multi-
modal registration technique required intermediate registration
templates for each imaging modality (dMRI and OCT) as
represented in Fig. 3. Both registration templates were further
aligned to the Allen mouse brain common coordinate
framework50 (CCF) for brain structure identification. Each vol-
ume registration step was performed with a series of rigid and
affine transformations and using the mutual information as a
similarity metric. The ANTs tools were utilized to perform
all registrations. The MRI registration template was the publicly
available 40 μm DSURQE T2-weighted MRI ex vivo mouse
brain atlas originally published by Dorr et al.31 from the
Mouse Imaging Center (MICe). The first b0 volume acquired
during the dMRI session was used to perform the registration,
and then transformations were applied to each b-value within the
DWI. For the 3× OCT brain, the registration template was a
25-μm mouse brain template published previously by our
group.9,22

2.7 Stereotactic Correspondence Between
the 3× and 40× OCT

The precise positioning of the OCM volumes within the dMRI
mouse brain was obtained by a combination of acquisition-
related procedures and postacquisition registration techniques.
First, the motorized sample stage was used to ensure an accurate
and consistent correspondence of the 3× and 40× images.
Although the linear stages employed for sample displacements
possess submicron accuracy, the X and Y linear stages were not
perfectly orthogonal, thus introducing a deformation when per-
forming mosaics. To compensate this effect, a simple transfor-
mation model was developed to characterize the motorized
sample stage assembly. This model describes the sample 2-D
Cartesian positions as a combination of the linear stage micro-
step positions. The model was ~p ¼ A~pM þ ~b, where A is a 2 × 2
transform matrix, ~b is a translation vector, ~p is the 2-D Cartesian
position, and ~pM is the microstep position of each linear stage.
The transform matrix was calibrated for each linear stage by per-
forming a displacement by predefined number of microsteps, by

Fig. 2 Automated 40× OCT ROIS generation method: (a) AIP of a 3× OCT mouse brain tissue slice,
(b) tissue mask and 0.25-mm margin from the agarose/tissue boundary (red line), (c) probability bias
used to guide the random ROI generation, (d) 25 ROIs of shape 0.5 × 0.5 mm generated for this
slice, and (e) 3D rendering of the 40× ROIs (red) generated for an automated 2R-SOCT.
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recording an image at each location and by then extracting the
real translation performed between the initial image and the
translated one using phase correlation. The linear stage origin
location was taken into account by adding a translation ~b.
This model was used to precisely convert linear stage position
to 2-D Cartesian positions. This accurate position was recorded
for each 3× OCT tile, thus eliminating the need to perform pair-
wise image registration during the data reconstruction.

Another calibration was performed in order to directly relate
the images acquired by the 3× and 40× arms of the microscope.
Using a resolution target, images of concentric circles were
acquired using both the 3× and 40× objectives. The 2-D
Cartesian coordinate corresponding to each image position
was recorded, and the translation between both arms was mea-
sured. Consequently, images acquired with the 40× objective
were mapped directly into the assembled 3× OCT brain slices
during the 2R-SOCTacquisition process. A second offline regis-
tration procedure was employed to validate and refine the ROI
positions for the subsequent multimodal comparison. A tem-
plate matching algorithm (OpenCV) was used to find the lateral
40× ROI positions within an assembled 3× tissue slice. The sim-
ilarity between the 40× templates and the 3× image patches was
assessed with the normalized cross correlation.51 This registra-
tion procedure was necessary due to positional errors caused by
the linear stages when performing large displacements to move
the samples from the 3× to the 40× objectives (Fig. 4). Next, to
be able to locate the 40× ROIs within the assembled 3× brains
and the dMRI volumes, an ROI overlay volume was generated.
The overlay generation method used the registered 40× lateral
positions and the tissue slices positions computed for the 3×
OCTwhole brain reconstruction. The resulting overlay volumes
had the same dimension as the assembled brains, and each ROI
was represented by a 3-D block of similar FOV and position.
Each block was assigned a different label to know which 3-D
FOV corresponds to which 40× ROI. Finally, to get a stereotac-
tic correspondence between the high-resolution 40× ROIs and

their MRI counterparts, the affine matrices obtained during the
3×OCTand dMRI brain registration onto the Allen mouse brain
were applied sequentially on the 40× ROI overlay volumes.

2.8 Multimodal Signal Comparison

The last part of this methodology was to compare the 40× OCM
images with the dMRI data measured in the same brains prior to
the automated histology (Fig. 5). The goal was to demonstrate
the capability of the 2R-SOCT imaging pipeline to perform mul-
timodal and multiresolution studies. First, the average dMRI
measures associated with each 40× ROI was measured using
the ROI overlay volumes that were registered to the MRI
data. The average was performed over all the dMRI voxels
encompassed by each 40× ROI. Second, the ROI overlay vol-
ume was coregistered to the Allen mouse brain CCF.50 All brain
structures within the 40× ROIs were thus extracted from the
Allen mouse brain atlas.52 The first ontological level in this
atlas is separated into: (1) basic cell groups and regions,
(2) fiber tracts, and (3) ventricular systems. For the purpose
of this demonstration, all ROIs containing at least one structure
classified within the “fiber tracts” ontological category were
selected. Finally, this subset of the 40× ROIs was further sep-
arated based upon their dMRI measure average values. The
ROIs were separated into four groups, using the 25%, 50%,
and 75% quantiles of their associated dMRI measure as
group discriminators. This was performed for the FA, the
NuFO, the AFD_max, the NODDI, and the NODDI IC_VF.
The 40× images classified with this multimodal and atlas-
based selection criteria were finally inspected to assert if they
exhibit brain structures commonly associated with low
(<25% quantile) and high (>75% quantile) values of each of
these dMRI measures. Finally, a few image features were com-
puted within the 40× ROIs (average and standard deviation of
reflectivity and attenuation). These features were categorized

Fig. 3 Multimodal and multiresolution coregistration workflow. In this illustration, all templates are shown
at a resolution of 25 μm, the 3× OCT slice is at a resolution of 15 μm, the 40× OCM images are at a
resolution of 1 μm and the dMRI B0 map is shown at a resolution of 125 μm. The red lines shown in the
Allen mouse brain template represent the brain structure boundaries as obtained from the Allen mouse
brain atlas.
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within each pair of low-/high-dMRI metrics and were compared
in a quantitative way using Student’s t-tests.

3 Results

3.1 2R-SOCT Imaging System Characterization

The axial and lateral resolutions of the dual-resolution serial
OCT system were measured using an USAF1951 resolution tar-
get (Thorlabs, R1L1S1N) and an OCT calibration phantom
(Arden Photonics, APL-OP01). All measurements were done
in water. The average lateral and axial resolutions of the 3×
arms were rxy ¼ 17.5 μm and rz ¼ 12 μm. The measured lat-
eral resolution of the 40× arm was rxy ¼ 1.3 μm. The axial res-
olution of the 40× arm (rz ¼ 7 μm) was estimated by moving a
mirror along the Z-direction and by measuring the FHWM of
the intensity peak around the focus. To calibrate the automatic

translation between the 3× and 40× arms, the concentric circles
of the resolution target were used. The measured average radiant
power at the sample was 9.4 mW, the OCT sensitivity was
98 dB, and the sensitivity roll-off was −0.2 dB∕mm.

3.2 Dual-Resolution Acquisitions

An example of a fixed-focus dual-resolution mosaic acquisition
is shown in Fig. 6. The ROI to be imaged was selected manually
with a custom GUI using the AIP of the last acquired 3× OCT
tissue slice [Fig. 6(a)]. Individual myelinated fibers appear in the
neocortex, as shown in the high-resolution mosaic of Fig. 6(c).
Also larger fiber bundles can be observed in the corpus callosum
(cc). It is important to note that due to the orientation dependent
OCT contrast of myelinated fibers,9,20 only the fibers that are
orthogonal to the laser beam optical axis will appear bright
in these images. Fibers that are parallel to the optical axis exhibit

Fig. 5 Multimodal signal comparison performed between the 2R-SOCT and the dMRI data. The 3×
SOCT (green) is used to image a whole mouse brain that serves as a stereotactic reference to locate
the 40× ROIs (red) within the dMRI volumes (blue). The OCT brain slice represented on the right (green
inset) was coregistered to the dMRI data with a series of rigid and affine transforms. Scale bar: 2 mm.

Fig. 4 Example of 3× ROIs (a) without and (b) with registration and (c) their associated 40× ROIs. As
shown by this example, the OCM to OCT registration is essential to find the accurate position of the 40×
ROIs within the 3× OCT whole mouse brain.

Neurophotonics 045004-7 Oct–Dec 2018 • Vol. 5(4)

Lefebvre et al.: Fully automated dual-resolution serial optical coherence tomography aimed at diffusion MRI validation in whole mouse brains



a dark contrast (e.g., the mammillothalamic tracts in the 3×
mosaic or the cingulum bundle (cing) in the 40× mosaic of
Fig. 6). Another source of OCT contrast in gray matter was
hypothesized to be the neurite density, as defined by the ratio
of neuronal cell bodies to neurites (myelinated axons and den-
drites).9,53 This may be responsible for the visible structures in
the neocortex or the hippocampus of the 40× mosaic. The ven-
tricles and vessels appear in the ex vivo OCT images as dark
areas. The vessels have a tubular or circular shape based on
their orientation with the slicing plane. The microvasculature
density could thus be another factor that affects the measured
OCT contrast in ex vivo brain tissue.

An example of the second type of dual resolution acquisition
(dynamic-focusing OCT or OCM) is shown in Fig. 7 for the cc.

This brain area illustrates fiber bundle characteristics affecting
the water diffusion signal analysis in dMRI, such as fiber OD,
fiber crossing, and heterogeneity of fiber density and sizes. All
OCM acquisitions exhibited high-signal attenuation and a deg-
radation of the lateral PSF with depth. Each OCM acquisition
took around 6 min to perform all movements, acquire a 3×
version of the ROI, find the water-tissue interface, and acquire
the 40× OCT dataset as raw interference fringe volumes. The
offline OCM volume reconstruction took another 5 min per
ROI. For the first brain in this study, the OCM ROI positions
were selected manually, and due to the long acquisition time
per dual-resolution position, the number of ROIs was limited
to 4 to 5 areas every 4 to 5 slices, which extended the acquisition
time to about 3 to 4 days.

Fig. 6 Example of a dual-resolution fixed-focus mosaic acquisition: (a) manual selection of the region of
interest to be imaged (green polygon), (b) 3× OCT mosaic acquired at the defined ROI position, and
(c) same region acquired with the 40× objective, assembled without preprocessing and blending.
Each mosaic tiles have an FOV of 0.5 × 0.5 mm2 and an overlap of 20%. Scale bar: 250 μm.

Fig. 7 Dual resolution OCT acquisition showing the cc and cingulate bundle in a mouse brain: (a) low-
resolution OCT volume used to target the high-resolution ROI (red rectangle), (b) maximum intensity
projection, (c) AIP of the high-resolution OCM volume acquired, and (d) AIPs over 30 μm of the
OCM volume. The scale bars are of size 0.5 mm for the 3× image and 100 μm for the 40× image.
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For the second type of dual-resolution acquisition, the ROI
positions could either be selected using the same GUI as for the
dual-resolution mosaic images, or they could be generated auto-
matically from the last acquired 3× OCT tissue slice. Figure 8
shows the AIPs of all dual-resolution ROIs acquired within a
single mouse brain and using the automatic ROI selection
method. Visual inspection of the ROI AIPs reveals that the
2R-SOCT system and template matching algorithm have suc-
cessfully associated the 40× OCM volumes to their 3× OCT
locations in each mouse brain slices. The difference between
a few 3 × ∕40× image pairs is mostly due to an axial range dif-
ference between the 3× and 40× AIPs. Indeed, the 3× OCT vol-
ume contains tissue from up to 800-μm deep, as of the 40×
OCM volume axial range is going from the axial position of
the water–tissue interface up to 250-μm deep. To characterize
the ROI positioning accuracy and repeatability of the 2R-
SOCT imaging system, a template matching registration was
performed using as reference the position chosen by the
microscope operator or the position generated by the automated
ROI position selection algorithm. Average lateral shifts of
Δx ¼ 24� 31 μm and Δy ¼ 142� 72 μm (mean ± std)
were measured between the reference and registered ROIs posi-
tions. As the template matching was performed at the down
sampled 3× OCT mosaic image resolution of 25 μm∕pixel,
the measured position shift in the X-direction corresponds to
1 to 2 pixels; thus part of the shift can be explained by image
discretization. The larger lateral shift in the Y-direction could
be caused by the way the sample stage is assembled. Indeed,
the Y-axis linear stage is mounted on top of the X-axis linear
stage and is only supported at its center, which acts as a pivot
point. When performing a translation between the 3× and
40× objectives, the weight load is transferred from one side
to the other of the pivot point. This can introduce minute linear
stage displacements that affect principally the y-axis positions.

3.3 Comparison Between the dMRI and 2R-SOCT

A multimodal comparison was performed between the OCM
ROIs and the dMRI data. A total of n ¼ 250 ROIs were acquired
across three brains. For one brain, the ROI positions were
chosen manually during the acquisition by the microscope oper-
ator, and for the two other mouse brains, the ROI positions were
selected automatically with the method presented above. A 3-D
rendering of all ROI 3-D FOVs aligned to the Allen mouse brain
template is presented in Video 1 (Fig. 9). As seen in this video, a
few ROIs were located outside of the brain, mostly toward the

anterior part. This is due to a tissue segmentation error when
imaging near the olfactory bulb, thus ROI positions were gen-
erated in agarose instead of in the tissue. This problem could be
addressed with improved tissue segmentation approaches.
Furthermore, after the OCT brain registration onto the Allen
mouse brain template, a few ROIs that were acquired in the
medulla were outside of the FOV and were thus ignored in
the multimodal comparison. Using the Allen mouse brain tem-
plate, a subset of n ¼ 114 ROIs was selected among all acquired
OCM volumes as they intersected at least one fiber tract
structure.

For this demonstration, 40× images associated with low- and
high-dMRI measure values are shown in Fig. 10 for selected
examples. The brain structures obtained with the multimodal
and atlas-based ROI selection criteria exhibit characteristics
that are in accordance with each measure value. All 40×
ROIs classified within the low- and high-dMRI measure groups
can be seen in the figures of the Appendix.

First, FA is known to be affected by the presence of crossing
fibers, fiber dispersion, fiber bundle density, and by the micro-
structural architecture of the cellular membranes.54 For example,
a 40× ROI containing the retrosplenial area and part of the cing
was classified in the low-FA group. In this case, the low-FA
value is due to the low-myelinated fiber density of this brain
area. Indeed, the myelin fibers seen in this ROI have a smaller
diameter and are not as tightly packed as the fibers in the fimbria
near the septofimbrial nucleus, which was classified in the high-
FA group. Second, low values of the NuFO measure are asso-
ciated with fiber tracts and strongly aligned bundles, as shown
here in the cc. On the contrary, high-NuFO values are measured
in fiber crossings areas. This is observed for example in the
gigantocellular reticular nucleus as shown in Fig. 10.
Similarly, the AFD_max is another measure computed from
the fODF and is interpreted as the AFD within a dMRI
voxel. The OCM images classified within the low-AFD_max
group show a low density of myelin fibers, as exemplified by
the supplemental somatosensory area where the external capsule
(ec) projects fibers in the cortex. On the opposite, high
AFD_max is an indicator of high fiber density and was associ-
ated with the olfactory and temporal limbs of the anterior com-
missure (aco, act) in this example. The last two dMRI measures

Fig. 9 3-D rendering of all 40× ROIs of this study from three 2R-
SOCT mouse brain acquisitions. All ROI overlay volumes were
aligned to an OCT mouse brain template, shown here as a grayscale
average intensity. The ROI position of the blue and red blocks was
selected automatically by the 2R-SOCT ROI selection method, and
the green blocks were selected manually by the microscope operator.
This is a still frame from the video. (Video 1, MP4, 2.2 MB[URL: https://
doi.org/10.1117/1.NPH.5.4.045004.1]).).

Fig. 8 AIPs of the dual-resolution ROIs acquired automatically within
a single mouse brain. (a) OCT ROIs acquired with the low-resolution
3× objective and (b) the same OCM ROIs acquired with the high-
resolution 40× objective. Each ROI is of size 0.5 × 0.5 mm2.
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that were compared with the OCM data are OD index and the
IC_VF from the NODDI model. Low OD is usually observed in
the most coherent white matter as shown in Fig. 10 by the genu
of the corpus callosum. As for the high-OD values, the original
NODDI publication44 states that high OD is expected in “white
matter structures composed of bending and fanning axons [and
in] the cerebral cortex and subcortical gray matter structures
characterized by sprawling dendritic processes in all directions.”
For example, the caudoputamen near the ec was classified as
having high OD. Finally, the intracellular volume fraction is
an indication of the neurite density as it is related to the
water diffusion constrained by the dendrites and neurons. To
illustrate, an ROI containing the epithalamus and the dentate
gyrus molecular and granule cell layers was classified within
the low-IC_VF group, and an ROI containing four different
fiber tracts (the superior cerebellar peduncle decussation, the
mammilotegmental tract, the doral tegmental decussation, and
the crossed tectospinal pathway) was classified within the
high-IC_VF category. This qualitative comparison between
the 2R-SOCT data and the dMRI measures shows that such
an imaging pipeline will enable multiresolution and multimodal
studies using small animal brains.

A quantitative comparison between the OCM and the dMRI
values was performed (Fig. 11). Image features were extracted
from each 40× ROIs AIPs: the average normalized reflectivity
hrNi, the average attenuation coefficient hμi, the normalized
reflectivity standard deviation σr, and the attenuation coefficient
standard deviation σμ. The OCM image features associated with
each 40× ROI containing at least one fiber tract structure were

Fig. 10 Examples of 40× ROIs associated with low- and high-dMRI measure values. Each image spans
an FOV of 0.5 × 0.5 mm2 and is an AIP over 250 μm. The yellow annotations indicate the brain structures
and their volume fraction within the ROIs. The acronyms follow the Allen mouse brain convention. RSP,
retrosplenial area; cing, cingulum bundle; SF, septofimbrial nucleus; TRS, triangular nucleus of septum;
fi, fimbria; cc, corpus callosum; dhc, dorsal hippocampal commissure; GRN, gigantocellular reticular
nucleus; PRNc, pontine reticular nucleus caudal part; tspc, crossed tectospinal pathway; SSs, supple-
mental somatosensory area; SSp, primary somatosensory area; CP, caudoputamen; ec, external
capsule; aco, anterior commissure olfactory limb; act, anterior commissure temporal limb; HY hypothala-
mus; ccg, genu of the corpus callosum; fa, corpus callosum anterior forceps; STR: striatum; SH,
septohippocampal nucleus; IG, induseum griseum; EPI, epithalamus; DG-mo, dentate gyrus-molecular
layer; DB-sg, dentate gyrus-granule cell layer; sm stria medullaris; MB, midbrain; dscp, superior cerebel-
lar peduncle decussation; mtg, mammilotegmental tract; dtd, doral tegmental decussation; and tspc,
crossed tectospinal pathway.

Fig. 11 Comparison between simple OCM image features the dMRI
metrics. Each histogram represents the OCM values classified within
the low- (blue) and high- (orange) dMRI metric quantiles. The red stars
indicate significant differences obtained from a T -test between all
pairs of low-/high-metric values, corrected for multiple comparisons
(p < 0.0025).
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classified based on the dMRI metric groups computed for the
qualitative comparison. For each feature (hrNi, hμi, σr, and
σμ) and for each pair of low-/high-dMRI metrics (FA,
AFD_max, NuFO, OD, and IC_VF), a T-test was performed
with a statistical significance level of α ¼ 0.05∕n, where
n ¼ 20 is the Bonferroni correction for multiple comparisons.
This revealed that σr was significantly higher for the ROIs
classified within the low-/high-FA groups (p < 0.00001), and
for the ROIs classified within the low-/high-AFD_max groups
(p < 0.001). A hypothesis to explain this effect is that the pres-
ence of a fiber bundle within a 40× ROI increases tissue hetero-
geneity, thus broadening the OCT reflectivity value range. As
the fiber bundle density increases, the overall reflectivity will
increase in the FOV because more myelin fibers contribute to
photon backscattering. The OCT signal for other dMRI metrics
also seems to change between groups, although no statistically
significant differences were measured. Some of the changes
observed in Fig. 11 include an increase of hμi (p ¼ 0.02)
and σμ (p ¼ 0.05) with FA, as well as a reduction of σr
(p ¼ 0.02) and hμi (p ¼ 0.04) with OD. A hypothesis to
account for the higher attenuation with increases in FA is
that as the fiber bundles become more strongly aligned, more
myelin fibers are encountered by the photons and each reflection
contributes to the sampling beam attenuation. This is consistent
with our previous findings in whole mouse brains imaged with
SOCT only.9 Furthermore, the reduction of σr and hμi as the
neurite OD increases may be linked to myelin sheets and the
anisotropic scatterers within the dendrites and axons that redi-
rect the light in more directions, thus the overall reflectivity val-
ues range within the 40×ROIs decrease. This tissue thus appears
as homogeneous. For gray matter, the neurites are less myeli-
nated thus the tissue reflectivity will also decreases.

4 Discussion
The novelty of our proposed dual resolution serial OCT scanner
lies in the fully automated acquisition procedure that allows
accurate and repeatable positioning of high-resolution images
within whole mouse brains. The two-objective configuration
of the 2R-SOCT system benefits from the advantages of both
types of OCT: the 3× OCT volumes are assembled into a
single brain, which can be aligned to mouse brain templates
and other imaging modalities, and the 40× OCT volumes are
able to resolve individual myelinated fibers and neuronal cell
bodies.53 Furthermore, the proposed system does not only
work with dual-resolution OCT, but could also be adapted to
other optical modalities. For example, using the lower resolution
OCT to provide the stereotactic reference for a two-photon fluo-
rescence laser scanning microscope. Another innovation of the
2R-SOCT technique is the automated acquisition procedure for
the high-resolution images, which remove user bias in the selec-
tion of ROIs within the mouse brain. To our knowledge, the im-
aging pipeline presented in this paper is the first one to enable
fully automated serial histology acquisitions at both low and
high resolutions and the registration of the acquired data to a
reference template. This allows to compare the high-resolution
images to dMRI measures in a fully automated and repeatable
way. We anticipate that this imaging technology will prove use-
ful in multimodal MRI validation studies.

A few design choices of the 2R-SOCT system introduced
limitations that could be improved in future implementations
of similar serial microscopes. First, the same swept-source
laser was used for both 3× and 40× arms. The narrow bandwidth

(Δλ ¼ 100 nm) of the swept-source laser resulted in isotropic
sampling for the 3× arm but in a high-sampling anisotropy
between the axial and lateral directions for the 40× OCM vol-
umes. This anisotropy limits the usefulness of the 3-D aspect of
the 40× measures due to the poor axial resolution. Using a
source with a larger bandwidth or distinct laser sources for
each OCT arms could resolve this problem at the expense of
increased cost and system complexity. Improving the axial
resolution might also be possible by performing axial
PSF deconvolution55 or interferometer synthetic aperture
microscopy.56 Another imaging artefact caused by the optical
design of the microscope is the focal plane curvature. This
was characterized by detecting the water/tissue interface within
each OCM volume and by next decomposing this surface into
Zernike polynomials57,58 Zjðx; yÞ of index j ≤ 5, thus only con-
sidering low-order aberrations. Typically, a focal plane depth
denivelation of around 70 μm was measured between the center
and the FOV boundary. For all OCM volumes, the field curva-
ture geometry was near-spherical. Indeed, the three largest
Zernike coefficients were, in decreasing order of their absolute
normalized amplitude, the piston term Z0ðjc0j ¼ 0.5Þ, the defo-
cus term Z4 (jc4j ¼ 0.26), and the vertical astigmatism term Z5

(jc5j ¼ 0.19). The defocus term is a consequence of the large
galvanometric mirror scanning angles necessary to get a lateral
FOVof 0.5 mm with the 40× objective. The vertical astigmatism
is caused by the two 45-deg mirrors used to guide the sampling
beam toward the 40× arm and by the scan-induced delay.59 A
different optical design, smaller lateral FOVs, the use of a lower
magnitude objective, or an inline scan-induced delay compen-
sation method could help to diminish this deformation.

Another design choice that increased the complexity of the
system was the low-NA air-based 3× objective employed for
the serial histology. An advantage of the 3× low-NA objective
is the large depth-of-focus it provided (around 1.5-mm in air),
which resulted in negligible lateral resolution variation with
depth. Also the A-line axial range was large enough to be
able to image both the current tissue slice and deeper areas cor-
responding to the couple next tissue slices. This provided infor-
mation that can be used when performing axial coregistration
between tissue slices for the whole brain reconstruction. A draw-
back of the air-based 3× objective was that a water-immersion
chamber had to be added between the objectives and the sample
to get a constant water thickness in the sample arm. During the
acquisition, tissue debris and dirt accumulated on the optical
window and resulted in a complex time-varying illumination
inhomogeneity artifact. To address this limitation, one could
replace the air objective by a water dipping low-NA objective.
The time-varying artifacts could also be compensated in post-
processing, e.g., using an advanced retrospective background
and shading correction algorithm.60

For this demonstration of the 2R-SOCT imaging pipeline, the
dual resolution ROIs were either selected manually by the oper-
ator during the acquisition or in a fully automated way by
employing an ROI selection algorithm. The manual selection
method is useful to target specific brain areas and to investigate
at high-resolution particular details observed during the serial
histology acquisition. As for the automated ROI selection strat-
egy, it offers the advantage of eliminating operator bias in the
ROI positions, and it diminishes the total acquisition time as no
user interaction is required, thus allowing for more dual-
resolution ROIs to be acquired during an imaging session.
Furthermore, the probability maps used to guide the random
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position selection can be adapted to use various image features
and thus provide an additional degree of freedom during exper-
imental design, such as local texture or the output of a multilayer
convolutional network. In future work, the automatic ROI selec-
tion methodology could be combined with an in situ slice-
to-volume registration procedure61 to an OCT mouse brain
template. Using such a strategy could allow fully automated
dual-resolution serial OCT protocols adapted to various exper-
imental designs, such as automatic validation of dMRI in pre-
selected fiber crossing areas, automatic multimodal studies with
ROIs generated from user-defined segmentation of the OCT
mouse brain template prior to the serial histology procedure,
or acquisitions guided by previously computed statistical para-
metric maps obtained from another imaging modality. Other
ROI selection strategies could be implemented to automatize
the 2R-SOCT imaging pipeline, such as a regular grid, tissue
segmentation into brain structures, and atlas-based selection
with predefined probability maps.

Upon inspection of the brain structures associated with each
ROI, it appears that each structure’s volume fraction is often
lower than could be anticipated when observing the 40× ROI
AIPs. For example, in Fig. 10, the ROI associated with a
high-AFD_max value seems to mostly contain the olfactory
limb of the aco, but this fiber tract only amounts to 29% of
this ROI volume fraction. This can be explained as follows.
First, the volume fractions were computed from the atlas labels
contained within each 3-D ROI FOV coregistered to the Allen
mouse brain template. Any registration mismatch can thus
impact the structure volume fractions. The registration was per-
formed with a series of rigid and affine transforms only to avoid
the overfitting that can occur when using nonoptimal registra-
tion parameters. Thus smaller local morphological differences
between the mouse brains and the template were not compen-
sated. Another explanation for this volume fraction discrepancy
is the image deformations and artefacts present in the 40× data.
Indeed, the focal plane curvature, the presence of water above
the tissue in the assembled OCM volumes, and the OCM
reconstruction method itself can all reduce the effective axial
FOVof the 40× ROIs, thus some structures that were intersected

by the ideal 40× FOV might not be present in the effective FOV.
Finally, this visual discrepancy between the reported volume
fractions and the structures visible in the AIPs might only be
a consequence of the 2-D representation of a 3-D FOV.

The larger size of the 40× ROI FOVs (0.5 mm) compared to
the dMRI voxel size (0.125 mm) had for consequence that the
average dMRI metrics per ROIs were affected by partial volume
effects. For example, the maximum FA value measured for an
ROI containing a fiber tract was 0.58. One option to reduce this
effect in future investigations with the 2R-SOCT would be to
split the ROIs into subvolumes of 125 μm prior to multimodal
comparisons. A drawback of smaller ROIs is an increase sensi-
tivity to data misalignment and registration errors, which in turn
would increase the need to include nonlinear deformations into
the multimodal registration pipeline. Finally, the naïve compari-
son of simple OCM image features with dMRI was shown to
be limited. There was a lot of cross talks between each
dMRI groups, and the statistical significance was low. The
use of more complex image processing techniques, e.g., to
extract information about the fiber volume fractions, fiber den-
sity, or orientation, could provide more information about the
tissue microstructure in future dMRI validation studies with
the 2R-SOCT platform. Nonetheless, the qualitative compari-
sons have shown that the 2R-SOCT imaging pipeline is able
to target specific area in the brain and that the high-resolution
ROIs can be located with good precision within diffusion
MRI data.

5 Conclusion
A dual-resolution serial OCT imaging system was developed.
The low-resolution OCT volumes acquired with a 3× objective
were used to image whole mouse brains. The high-resolution
OCM volumes acquired with the 40× objective were able to
resolve individual myelinated fibers and other brain tissue
structures. Moreover, the 2R-SOCT data were coregistered to
dMRI data acquired for the same mouse brains prior to histol-
ogy. This fully automated dual-resolution serial histology pipe-
line was used in a qualitative validation example, revealing the

Fig. 12 40× ROIs classified within the low- (<25% quantile) and high- (>75% quantile) FA groups. The
yellow texts indicate the fiber tract structures within each ROIs, using the Allen mouse brain atlas struc-
ture acronyms.
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correspondence between various dMRI measures and fiber
architecture. Our imaging pipeline demonstrates the usefulness
of this imaging modality to perform multimodal validation stud-
ies and opens the way to interesting applications, such as small
animal neuropathology multimodal cross-sectional studies.
Finally, the 2R-SOCT imaging pipeline presented is not limited
to OCT and OCM. Indeed, any imaging modality could be used
in the second arm provided that the optical elements are adapted
to the wavelength and type of signal to be measured. Such a
dual-modality serial OCT scanner could be used, e.g., to evalu-
ate colocalization in whole mouse brains of the microvascula-
ture changes measured with a two-photon fluorescence
microscopy, with the white matter distribution mapped with
the SOCT.

6 Appendix

6.1 Compensation of the Time-Varying dMRI Signal

The fixed mouse brains were kept in their skull and stored in
PFA at 4°C until the dMRI acquisition session. On the acquis-
ition day, the sample to be imaged was removed from PFA and
pat-dried, placed in a modified 10-ml syringe filled with
Fomblin and placed in the dMRI machine. A sample was
thus colder than room temperature at the beginning of the
dMRI acquisition, and it reached temperature equilibrium dur-
ing the imaging experiment. The sample temperature variation
throughout the acquisition induced time-varying water diffusiv-
ity. This is a known effect associated with fixed sample

Fig. 13 40×ROIs classified within the low- (<25% quantile) and high- (>75% quantile) NuFO groups. The
yellow texts indicate the fiber tract structures within each ROIs, using the Allen mouse brain atlas struc-
ture acronyms.

Fig. 14 40× ROIs classified within the low- (<25% quantile) and high- (>75% quantile) AFD_max groups.
The yellow texts indicate the fiber tract structures within each ROIs, using the Allen mouse brain atlas
structure acronyms.
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imaging.46,62 To reduce the dMRI signal drift, the isotropic
nature of diffusion in the cerebrospinal fluid (CSF) was
exploited. First, the ventricles were segmented by thresholding
the voxels in b0 images based on their intensity. Then an average
signal time profile was computed in the CSF by selecting 1000
voxels at random in the segmented ventricles. Assuming that the
signal should be isotropic for each b-value in the CSF, the aver-
age signal was computed for each shell. A synthetic time profile
was thus generated using the estimated average value for each
shell. The signal drift was extracted by subtracting the synthetic
multishell isotropic profile from the measured average time
profile within the CSF. Finally, the signal drift was smoothed
temporally using a Gaussian filter with σ ¼ 1 subscan. The
time-varying signal was compensated by adding the computed
drift bias to all DWI voxels.

6.2 Comparison Between 40× OCM and dMRI

The multimodal registration results were evaluated visually by
comparing the aligned whole mouse brains with the dMRI data
and by comparing the identified structures within the 40× dMRI
with those extracted from the Allen mouse brain atlas using only
the ROI positions obtained from the coregistration. As seen in
Figs. 12–16, the same structures were seen in the 40× ROIs as
predicted by their positions within the Allen mouse brain atlas
after registration, which indicates that the registration errors
were reasonably low. Further investigation would be required
to quantitatively assess the registration errors introduced by
the multimodal registration procedure and inherent to the 2R-
SOCT acquisition. This would require a much higher dMRI
resolution in selected ROIs to enable an additional direct

Fig. 15 40× ROIs classified within the low- (<25% quantile) and high- (>75% quantile) OD index groups.
The yellow texts indicate the fiber tract structures within each ROIs, using the Allen mouse brain atlas
structure acronyms.

Fig. 16 40× ROIs classified within the low- (<25% quantile) and high- (>75% quantile) IC_VF groups.
The yellow texts indicate the fiber tract structures within each ROIs, using the Allen mouse brain atlas
structure acronyms.
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registration between the OCM and dMRI. This cannot be
achieved with the existing data as the dMRI data resolution
was 125 μm, which represents a quarter of the 40× OCM
FOV size and renders all fine coregistration attempts futile.

Upon visual inspection of the OCM images classified in the
low-/high-dMRI metric groups (Figs. 12–16), one can notice
that the FA/AFD_max and the NuFO/OD metrics seem to
originate from tissue areas characterized by similar fiber archi-
tectures. These dMRI measures are all based on different
hypotheses and they are interpreted in different ways when
used in dMRI studies. The fact that some dMRI metrics
seem to be correlated when visualizing the OCM ROIs is an
interesting result. Analyzing the OCT fiber architecture with
more advanced image processing techniques and comparing
the results with various dMRI models could help validate the
hypothesis of each model, or it could indicate that some
dMRI models have erroneous hypothesis or are wrongfully
interpreted.
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