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Abstract

Significance: Clinical use of fNIRS-derived features has always suffered low sensitivity and
specificity due to signal contamination from background systemic physiological fluctuations.
We provide an algorithm to extract cognition-related features by eliminating the effect of back-
ground signal contamination, hence improving the classification accuracy.

Aim: The aim in this study is to investigate the classification accuracy of an fNIRS-derived
biomarker based on global efficiency (GE). To this end, fNIRS data were collected during a
computerized Stroop task from healthy controls and patients with migraine, obsessive compul-
sive disorder, and schizophrenia.

Approach: Functional connectivity (FC) maps were computed from [HbO] time series data for
neutral (N), congruent (C), and incongruent (I) stimuli using the partial correlation approach.
Reconstruction of FC matrices with optimal choice of principal components yielded two inde-
pendent networks: cognitive mode network (CM) and default mode network (DM).

Results: GE values computed for each FC matrix after applying principal component analysis
(PCA) yielded strong statistical significance leading to a higher specificity and accuracy. A new
index, neurocognitive ratio (NCR), was computed by multiplying the cognitive quotients (CQ)
and ratio of GE of CM to GE of DM. When mean values of NCR (NCR) over all stimuli were
computed, they showed high sensitivity (100%), specificity (95.5%), and accuracy (96.3%) for
all subjects groups.

Conclusions:NCR can reliable be used as a biomarker to improve the classification of healthy to
neuropsychiatric patients.
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1 Introduction

Although fNIRS has been around over 30 years now, its clinical efficacy and role are still being
questioned due to its low specificity and sensitivity, especially in the area of neuropsychiatric
diseases. Many researchers have been trying to improve its efficacy, sensitivity, and specificity in
clinical settings by either improving its technology or the post processing analysis methods. Over
the last 20 years, the richness of fNIRS data due to its ease and speed of data collection, non-
invasiveness and access to local activity have become even more attractive to cognitive neuro-
scientists in testing multitude of data processing and neuroscientific hypotheses. Strangely
though, the brain does not work locally.1–4

fNIRSians have long been in search of a killer application that would secure the place of
fNIRS in clinical settings. To this end, fNIRS have been applied to subjects of all ages and health
conditions.5–8 Discussions regarding the limitations and ways to overcome these are a few yet
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they all have helped us redirect our efforts in proposing ever more innovative solutions. There are
good reviews on the promise of fNIRS in neuropsychiatry.5,7,9–14

So far, fNIRS researchers have focused more on the data analytics side than developing of
novel technologies. We have enjoyed the availability of various fNIRS systems but at the cost of
standardization of probe designs, data collection methodologies, and even more on the data
analytics.13 The lack of standardization on these issues has made it increasingly more difficult
to compare the findings from different studies.15 Moreover, physics of photon migration through
the layers of the head limits the specificity of the fNIRS device to cortical layers. Collected data
become an amalgam of physiological activity from each layer the photon interacts with. Hence
the data are known to be contaminated with background systemic physiological fluctuations that
are undoubtedly correlated with the cognitive activity.16,17 The low specificity of the CW-fNIRS
devices can be overcome with time resolved systems albeit at a greater cost and complications of
data collection. Many novel data analysis methods have been proposed to extract the brain
originated, task related data from the collected data.18–20 Still there is no consensus on how
to approach the fNIRS data, leading to the unsettling yet quite accurate prediction of Drs.
Quaresima and Ferrari: “The prediction of the future directions of fNIRS for assessing brain
function during human behavior in natural and social situations is not easy.”13 It is, hence, only
logical to propose an analysis method (a pipeline of data analysis) that would avoid the pitfalls of
the standardization issues faced in fNIRS signal processing field. The following Table 1 is a list
of minimum hardware, data collection, and analysis recommendations for fNIRS-based cogni-
tive research that are derived from experience and literature:

This study proposes an improved post-processing approach to data obtained from fNIRS
recordings over our previous paper.21 The sole aim was to converge on a data analysis
pipeline that will be accepted and adapted easily by fellow fNIRSians. The proposed algorithm
should have a common denominator, a base for anyone to build upon. The algorithm
aims to improve the statistical significance of the fNIRS findings, and hence, the trust on the
system. The major aim is to boost the statistical significance of the GE values; hence, the accu-
racy of classification of fNIRS findings in a set clinical data obtained in our group’s previous
studies.

Table 1 Recommendations for fNIRS based research.

Hardware requirements • Number of channels ≥8

• Collect data from both hemispheres

• Sampling rate ≥0.5 Hz per channel

• Number of wavelengths ≥2

Task requirements • Duration of collected data ≥10 min

• Block stimulus with block duration ≥20 s

• Stimulus type ≥2

• Resting data ≈30 s

Analysis requirements • Prefer [HbO] data

• Avoid single channel data analysis

• Prefer a dimensionless analysis (i.e., normalization of data)

• Prefer a multichannel analysis (i.e., FC)

• Prefer a metric that summarizes and captures the behavior
of multichannel data (i.e., FC strength such as GE.)
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2 Methods and Materials

2.1 Subjects and Experimental Procedure

About 13 healthy subjects (six female) at an average age of 26, 20 patients with migraine without
aura (12 female) at an average age of 27, 26 patients with obsessive compulsive disorder
(11 female) at an average age of 29, and 21 schizophrenia patients (10 female) at an average
age of 28 participated in this study. The study protocol was approved by the Ethics Committee
of Pamukkale University in 2008. Parts of these data were published by our group and
coworkers.22–30 Consents were obtained from all subjects and they were all informed about the
study before the experiment. Subjects were seated in a dimly illuminated insulated room and
they were told to look at a computer screen placed in front of them.

Subjects responded to the computerized color word matching Stroop task that involved three
sets of stimuli: neutral (N), congruent (C), and incongruent (I) stimuli. The task involved 15 N,
15 C, and 15 I stimuli presented in blocks of five sequential stimuli. The inter stimulus interval
was 4 s. The rest between each block was 20 s. The stimuli blocks were randomized for each
subject. The subject was asked to respond with left or right mouse click depending on whether
the stimulus was a match or not. The task started with a 30 s of rest and ended with a 30 s
of rest.24,31

2.2 fNIRS Equipment

The fNIRS system (NIROXCOPE 301) was developed at the Neuro-Optical Imaging Laboratory
of Bogazici University.23,30 NIROXCOPE 301 has a sampling frequency of 1.77 Hz, and it con-
sists of a data acquisition unit, a data collecting computer, and a flexible probe to place on the
forehead of the subjects. The probe has a rectangular design housing four dual wavelength light-
emitting diodes (LED) emitting at 730 and 850 nm. Each LED (Li, i ¼ 1: : : 4) is surrounded by
four detectors (Di, i ¼ 1: : : 10) placed 2.5 cm away from the center of an LED as seen in Fig. 1.
A channel is a pair of LED and detector that surrounds that LED. Since several of the in-between
detectors are shared, there are 16 channels (Ci i ¼ 1: : : 16). Since the received light intensity is
inversely proportional to the square of the distance between a source and a detector, data from
long range channel pairs were not collected (i.e., between L1 and D5, D7, or D9).

The validity of this probe design and its ability to detect brain tissue were discussed in our
previous study18 as well as its efficacy in providing cognition-related signals.21,24–26,30,32

2.3 Analysis of the fNIRS Data

fNIRS data are known to be contaminated with systemic background fluctuations. So before
attempting to generate connectivity matrices from pair-wise correlations, one should try to
minimize the effect of this background fluctuation so that the effect of this dominant signal
is eliminated. Assuming that any correlation between two channels will be dominated by this

Fig. 1 Rectangular probe geometry of the fNIRS NIROXCOPE 301. Li are the LEDs; Di , the
detectors; and Ci , the channels.
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common background signal, our previous study aimed to show that a partial correlation
(PC)-based analysis will yield a less biased insight into the underlying connectivity due to task.
In that paper, an outline of the signal processing steps were given in detail.21 As a quick sum-
mary, a signal processing pipeline was developed to compute the FC matrices (FC) from [HbO]
signals by using a PC method, rather than the conventional pearson correlation analysis. Then
these matrices were used to compute the GE values. In this paper, an additional step in between
the FC matrices and GE computation is proposed by employing the principal component analy-
sis (PCA). As a last step, a new biomarker as a function of behavioral and fNIRS deriven
features: neurocognitive ratio (NCR). The details of the derivation and computation of this
biomarker is explained in Sec. 2.4 and the block diagram of the algorithm is shown in Fig. 2.

This paper will present the results of this PCA-based FC analysis, hence called the FC-(PC)2:
FC analysis via PCA based PC.

2.3.1 Preparation of fNIRS data for FC analysis

FC is a method where correlations from time series data are used to create a matrix called the
functional connectivity matrix (FC). The matrix is a N × N matrix, where N is the number of
channels for fNIRS (number of voxels for fMRI). In this study, N ¼ 16. Since the study protocol
involved the Stroop task with three types of stimuli, it was reasonable to create 3FCs. fNIRS data
that will be fed into FC calculations were prepared in the following steps to generate these
matrices:

1. Locate the stimuli blocks in fNIRS time signal for each subject [i.e., Fig. 3(a)]
2. Create three concatenated stimulus time series for each channel [i.e., Figs. 3(b) and 3(d)]
3. Generate the regressor to be used in PC calculations as explained in Sec. 2.3.2,

[i.e., Fig. 3(e)].

2.3.2 Functional connectivity via PC

PC provides a cleaner (or less biased) relationship between two variables after removing a
common effect present in both of the variables. The PC coefficient (ri;jjk) between any two chan-
nels ði; jÞ in the presence of a common influencer (k) is computed as follows:33

EQ-TARGET;temp:intralink-;e001;116;190ri;jjk ¼
ri;j − ri;krj;kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − r2i;kÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − r2j;k
q

Þ
. (1)

[HbO] data from each channel are passed through a high pass filter (butterworth, eigth order,
cutoff at fc ¼ 0.09 Hz, stop-band at fs ¼ 0.1 Hz) to obtain the HBOi

H. The regressor used in
PC-based FC analysis is obtained by averaging this signal over all the channels. HenceHBOR ¼P

iHBOi
H is used to regress out the systemic physiological affects from the correlation of the

unprocessed [HbO] signals from two channels. Once the regressor HBOR is computed, indi-
vidual regressors for N, C, and I stimuli are generated similar to the concatenation explained

Fig. 2 Block diagram of the NCR algorithm (abbreviations are given in the text).
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in Fig. 3. Then these regressors are used in the computations of the PC coefficients as entries to
the FC. This analysis is performed for each subject. At the end of this part of this analysis, 3FCs
are generated from each subject’s fNIRS. The FC matrices computed for stimulus based time
series are thus termed FCN , FCC, and FCI .

2.3.3 Functional connectivity via PCA based PC

In a review by Du et al.,34 it is claimed that statistical significance of the FC derived features (i.e.,
GE) can be improved by adding PCA after the FCs are calculated. Once an FC was generated,
PCAwas applied to the it. Since the matrices were 16 × 16, there were 16 PCs. The assumption
in applying PCA to FC is the following:

EQ-TARGET;temp:intralink-;e002;116;206FCi ¼ FCCMi þ FCDM
i ; i ¼ N;C; I; (2)

where FCDM
i is the FC matrix of the default mode network, and FCCMi is the matrix for the

cognitive mode network. Since these two matrices can be assumed to be linearly independent,
PCA can be applied to separate them into their independent parts. The choice of PCs turned out
to affect the statistical significance of the GECM values computed after new FCs were recon-
structed from the chosen PCs. The expectation is the convergence to a subset of PCs that will
yield the strongest significance for GECM

i (as explained in Sec. 2.3.4) while no significance for
the GEDM

i .35,36 A combinatorial search analysis was performed to find the best principal com-
ponents to reconstruct the new FCCMi . The choice of how many principal components to be
used was based mostly on the strongest PCA eigenvalues. However, components with lower
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Fig. 3 Preparation steps shown on a sample [HbO] data. (a) Raw and unprocessed [HbO] data of
subject 3 (control), from channel 12, where the patched regions designate the stimuli blocks.
(b) Concatenated [HbO] data for N stimulus where segments of N data (Ni , i ¼ 1: : : 5) from
the original data are concatenated sequentially to create the [HbO] (N) time series data,
(c) Concatenated [HbO] (C) time series data for C stimulus, (d) Concatenated [HbO] (I) time series
data for I stimulus, and (e) the regressor computed as explained in Sec. 2.3.2.
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strengths were also included in some cases. Once the best PC subset was found, this subset was
used to resonstruct the FCCMi . Remaining PCs were then used to reconstruct the FCDM

i ,
i ¼ N;C; I. The expectation from these FCDM

i matrices is such that the t-statistics of the
GEDM

i , i ¼ N;C; I will be low (no statistical significance). So the algorithm works as an opti-
mization approach where the goal was to maximize the t-statistics (minimize the p value) of the
GECM

i , i ¼ N;C; I.

2.3.4 Global efficiency

Global efficiency (GE) is one of the many metrics of graph-based network analysis and has been
used in brain connectivity studies.21,37–39 This approach is intrinsic to cognitive neuroscience
where the aim is to investigate the neural correlates of cognition.40–42 Several groups, including
ours have reported that GE can be reliably used as a metric to quantify the information sharing
efficiency of the FCCM;DM

i s. In this analysis, channels can be considered as a set of vertices V
and the PC coefficients as assigned weights on the set of edges E, between vertices to construct
an undirected complete weighted graph G ¼ ðV; EÞ.43–45

GE can be evaluated for a wide range of networks, including weighted graphs.45 Maximal
possible GE occurs when all edges are present in the network. The GE value was computed by
using the formulation of Latora and Marchiori’s:46

EQ-TARGET;temp:intralink-;e003;116;503GE ¼ 1

NðN − 1Þ
X
i≠j∈G

1

dij
; (3)

where dij is defined as the smallest sum of the physical distances throughout all the possible
paths in the graph from i to j.46 This equation requires the use of binary matrix entries. So, since
there was always some sort of a connection between channels (the entries were never 0) a thresh-
old had to be used to eliminate very low connections. So choosing an appropriate threshold value
was necessary to convert the FCs to binary matrices:

EQ-TARGET;temp:intralink-;e004;116;395FCði; jÞ ¼
�
1 if jFCði; jÞj > Θ
0 otherwise

; (4)

where FC is a binarized matrix after a hard thresholding at the value Θ is applied to the jFCj.
Here, Θ is not an actual correlation value, rather the number of highest correlation values to be
kept in the matrix. It is worth noting that absolute values of the FC were used in this equation.
This threshold value determines the number of non-zero nodes to be kept in the binarized matrix,
which in turn effects the computation of the GE values.

In this analysis, two specific Θ node values were determined iteratively for each subject
group (see Table 2 for group dependent Θ values), one for CM (ΘCM) and one for DM
(ΘDM). A review on the choice of such a threshold (Θ) yielded a value of the highest 10%
to 20% of all the entries in the jFCjs. A sweep of the best group-wise Θ that provided the highest
statistical significance (lowest p value as shown in Table 2) for GECMs for three types of stimuli
yielded specific ΘCM values for different subject groups. In contrast, ΘDM was chosen for the

Table 2 PCA components for subject groups that yielded the best p value for GECM .

Group CM DM ΘCM ΘDM p value

Controls ½1 · · · 9� Remaining 43 32 0.033

Migraine [2, 3, 6, 7, 9, 16] Remaining 40 28 0.0017

OCD ½1 · · · 12;14;16� Remaining 38 48 0.02

Schizo ½1 · · · 5;6 · · · 9;10; 12 · · · 16� Remaining 27 41 0.048
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highest p value for three stimuli types. The computation of the GE values by Eq. (3) was per-
formed by the efficiency.m code from the Brain Connectivity Toolbox.4

2.4 Neurocognitive Ratio

Cognitive quotient (CQ) can be considered as a measure of level of cognitive effort exerted to
fulfill a task. There are several indices, quotients, and metrics proposed to assess this effort.
Usually these are in the form of combinations of various neuropsychological task scores47–49

and sometimes in the form of physiological parameters.50 Cognitive load is a similar concept
and many physiological measures have also been proposed to quantify this effort.51 The
assumption for using physiological measures to quantify cognitive load is that brain, just like
a muscle, has to execute some sort of a physiological activity (preferably measurable) for a
specific cognitive task.52 So, the holy grail of neuroscience is to find this link between neuro-
physiological activity and psychological activity, also called the neurobiological basis of
behavior.12,53 Hence, researchers have defined a new concept, “neural efficiency,” to quantify
the level of efficiency of collaborative effort of the brain in solving a difficult cognitive task
(for a complete review see Ref. 54). Neural efficiency can be computed from physiological
parameters such as heart rate variability, EEG measurements, and fMRI recordings, and recently
from fNIRS findings.55–57 Researchers preferred to find a relationship between the neuropsycho-
logical data and neurophysiological data mostly in terms of correlation coefficients or regression
analysis. The equation eventually obtained transforms one finding to another one, consequently
assumes a causal relationship.

Borrowing an idea from neurophilosophy, one can impose the duality principle in brain’s
operations where an independent relation between the brain and mind can be the source of cog-
nition. Hence, one can simply propose a metric (an index) that combines these two so-called
independent measures; namely, the behavioral findings with physiological findings in assessing
the neurocognitive effort. Here, a new combined metric is proposed, by which NCR is defined as
follows:

EQ-TARGET;temp:intralink-;e005;116;401CQi ¼ ACCi∕RTi; (5)

EQ-TARGET;temp:intralink-;e006;116;359Ri ¼ GECM
i ∕GEDM

i ; (6)

EQ-TARGET;temp:intralink-;e007;116;336NCRi ¼ CQi × Ri; (7)

where i is the stimulus type, ACC is the accuracy in percentage, and RT is the reaction (response)
time in seconds. CQ is defined for each stimulus type. NCRi, as calculated from Eq. (7), can be
assumed to be a biomarker specific for each subject group (i.e., healthy controls, patients with
migraine, OCD, or schizophrenia disorder). The underlying assumption in proposing this index
as a biomarker is that the GE of a default mode network should be different than the GE com-
puted during a cognitive task (GECM ≠ GEDM) and that the ratio of the two [Ri calculated as in
Eq. (6)] can be considered as an objective indicator of attention and inhibition control. A rea-
sonable expectation would be that Ri ≥ 1 for healthy subjects. In fact, one can even hypothesize
that an increased demand for inhibitory control can be associated with restructuring of the global
network into a configuration that must be more optimized for specialized processing (functional
segregation), more efficient at communicating the output of such processing across the network
(functional integration), and more resilient to potential interruption (resilience). Thus, investi-
gation of graph theoretical metrics under varying levels of inhibitory control can provide
clinicians with a quantitative and objective metric in their clinical decision processes.53,58,59

3 Results

3.1 Behavioral Results

The reaction times and accuracy rates for the subjects for all stimuli types are given in Figs. 4(a)
and 4(b). Reaction times are calculated by averaging the response times to all the responses, not
just the correct answers.
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Two-way ANOVA for RT values yielded significant values for subject comparison
(p ≪ 10−6), and stimulus type (p ≪ 10−6) and no interaction for SUB⋆STIM (p ¼ 0.749).
Accuracy was calculated by taking the ratio of total number correct answers to total number
of questions. Two-way ANOVA for the ACC yielded significant values for subject comparison
(p ≪ 10−6), and stimulus type (p ≪ 10−6) and no interaction for SUB⋆STIM (p ¼ 0.1588).

CQ with respect to subjects and stimuli can be seen in Fig. 4(d). Two-way ANOVA for CQ
yielded significant values for subject comparison (p ≪ 10−6), and stimulus type (p ≪ 10−6) and
no interaction for SUB⋆STIM (p ¼ 0.9958). CQ can also be considered as a metric of cognitive
load. In several studies, such scores from different tests are linearly combined (sometimes with
weights) to provide a stronger metric.

3.2 fNIRS Data Analysis

3.2.1 GE analysis

The computation of GECM;DM from the FCCM;DM matrices yielded quite interesting dynamics as
shown in Figs. 5(a) and 5(b). First, PCA and Θ optimized GECM values showed a strong sta-
tistically significant difference within subjects [see the p values displayed on top of the bars of
Fig. 5(a)] with the optimal choice of principal components and Θ values given in Table 2. This is
expected since the optimization for the PCA components and Θ is supposed to lead to
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Fig. 4 (a) RT values at the columns of Table 3 for all subjects across stimuli. p values are pre-
sented on top of bars. (b) ACC values at the columns of Table 4 for all subjects across stimuli.
p values are presented on top of bars; (c) Stroop interference effect in reaction times; (d) CQ
values computed by Eq. (5). Error bars represent the standard deviations. All values in these
graphs are given in Tables 3–5.
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statistically significant different GECM values for each subject group. Group averaged GECM

values were higher for controls than for the patients [see Fig. 5(b)] although different optimized
parameters were used for each subject group, whereas no significant difference was observed for
any of the subject-wise GEDM values (p > 0.05).

Second, both the GECM and GEDM values were observed to be different between subject
groups [as more evident from the means graph in Fig. 5(b)]. As the GECM value decreases from
healthy controls to schizophrenics, the GEDM increases. This is somewhat expected since the
threshold node value for CM (ΘCM) that yielded strong significance ended up being lower in
patients. Vice versa, the threshold node value for DM (ΘDM) were higher for patients than con-
trols in most of the cases. Higher value of GECM in controls over patients could mean that a
healthy brain recruits a wider brain circuitry with more efficiency during a cognitive task,
whereas diseased brain cannot. In contrast, higher values ofGEDM for diseased population might
be due to a domination of the DM leading to a lesser space for CM; hence, the poor performance
on cognition related activities. Figure 5(b) shows the ratio of mean of GECM∕GEDM for each
subject group. The ratio is in favor of healthy controls and significantly lower in diseased groups.

A note of caution is that these values of GECM;DM depend heavily on the choice of optimal
principal components and threshold values when computing the FCCM;DM matrices. Hence,
many iterations and heuristic reasoning were employed to find the best GE values that would
yield the highest statistical significance for GE. An iterative approach in search of the best PCA
components yielded the results in Table 2 that led to the highest statistical significance for
the GECM

i , i ¼ N;C; I for a specific group (i.e., controls, migraine, OCD, or schizophrenia
subjects).

Similarly, the convergence to the optimal threshold values required an extensive search. The
number of highest connectivity values had to be found specifically for each subject group that
would lead to the most statistically significant p-value for the GECM. Table 2 reports the best
combinations for PCA components to be used in the computation of the new FCCM matrices and
the threshold values that would give the highest significance in the calculation of the GECM and
GEDM values.

Figure 6 provides global representations for mean ofFCCM maps, with the GE values printed
on top of each connectivity map. These maps were obtained by averaging the PC-based
FCðN;C; IÞ for subject groups and then reconstructing the FCCMðN;C; IÞ with the PCA com-
ponents given in Table 2 to find an averaged representativeFCCMðN;C; IÞ.GECMðN;C; IÞ were
computed by thresholding for the highest number of entries given Table 2.
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Fig. 5 (a)GECM;DM values for all subjects across three types of stimuli. p values are presented on
top of bars, the error bars are the standard deviations and are also given in Tables 6 and 7.
(b) Mean of GECM;DM values for all stimuli with respect to subject group. The numbers above
the bars are the ratios (Ri ¼ GECM∕GEDM ) as explained in Sec. 2.4. The error bars are the within
group standard deviations.
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A group-wise representation of such binary matrices can be seen in Fig. 6. These represen-
tative binary FC matrices (FCCM) were computed by first subject-wise averaging of FCCM

(
P

sFCCMs where s is the subject number within a subject group) and then applying the thresh-
olding approach as in Eq. 4 with the parameters in Table 2.

3.2.2 NCR analysis

Both the R and NCR values computed by Eqs. (6) and (7) elucidated strong statistical
significance between healthy controls and rest of the diseased groups as seen in Figs. 7(a)
and 7(b).

Two-way ANOVA for NCR yielded significant values for subject comparison (p ≪ 10−6),
and stimulus type (p ¼ 0.001) and no interaction for SUB⋆STIM (p ¼ 0.3575). As expected
NCR values are highest for the healthy controls since both the CQ and R values are higher in
controls.

3.3 Receiver Operating Characteristic Analysis

Receiver operating characteristics (ROCs) provide a comparison of the accuracy of classification
between the healthy controls and the rest of the cases (2-case comparison). Figure 8(a) shows
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Fig. 6 Averaged FC binary maps of subject groups (rows) with respect to stimulus types (columns)
where the GECM values are presented at the titles.
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the results of performance of classification by using means across three stimulus types of the
various different parameters obtained in this paper.

As can be observed from Table 8, the accuracy of classification with respect to mean of CQ
(CQ ¼ 1∕3

P
iCQi, i ¼ N;C; I) values is 81.2% while the accuracy with respect to mean value

of NCR (NCR) peaks at 96.3% with a very high AUC score of 99.33%.
As promised, the ROC values show a dramatic increase once the features derived from fNIRS

findings are included alongside the behavioral findings. ROC values computed from the NCR
holds a great promise. Except the sensitivity, there are remarkable increases in the other ROC
parameters between CQ and NCR. Specificity increased by 17.9%, accuracy by 15.1%, and
AUC by 10% as seen in Table 8. One might wonder how the classification performance of
NCR behaves between non-healthy subjects. That ROC analysis is given in Fig. 8(b). AUC
values for controls versus diseased patients are very high; hence, the sensitivity and specificity
of the NCR values are very promising in separating healthy from non-healthy brain. The clas-
sification accuracy of NCR between controls and OCD patients is 100% but it drops to 74.47%
between OCD and schizophrenia patients. The accuracy is high at 86.95% between migraine and
schizophrenia patients.
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Fig. 7 (a) R values as computed by Eq. (6) for all stimuli across subjects and (b) NCR values as
computed by Eq. (7) for all subjects across stimuli all presented with their standard deviations as
error bars. Within group p, values are presented on top of bars, whereas inter group p values are
given at the title of the graphs.

ROC Improvement

Sensitivity Specificity Accuracy AUC

(a)

0

10

20

30

40

50

60

70

80

90

100

R
O

C
 V

al
ue

s 
(%

)

ROC Between Group Comparisons

C-M C-O C-S M-O M-S O-S

(b)

0

10

20

30

40

50

60

70

80

90

100
R

O
C

 V
al

ue
s 

(%
)

ACCUR
AUC

Fig. 8 (a) ROC values computed for mean values across stimulus types of CQ, GECM , and NCR
between healthy controls and the rest of the patients. SENS: sensitivity, SPEC: specificity,
ACCUR: accuracy, AUC: area under the curve. (b) ROC values between pairs of subject groups.
C: controls, M: migraineurs, O: OCD patients, S: schizophrenia patients.
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4 Discussions

4.1 Behavioral Findings

The Stroop task is one of the most favorable neuropsychological tests to investigate the cognitive
impairments in attention and inhibition control.31,60–62 The behavioral results in this paper con-
firm the claim that both the reaction times and accuracy rates are statistically different between
healthy controls and patients with neuropsychiatric diseases as seen in Tables 3 and 4 and in
Figs. 4(a)–4(d). The reaction rates for a specific stimulus type increase, accuracy rates decrease
(error rates increase) as the severity of the attention and inhibition controls are impaired. This
phenomenon has been also observed in this study as seen in Figs. 4(a)–4(d). In a review by Foti
et al.,63 several studies reported an impairment in executive functions observed in migraine
patients as measured by different neuropsychological tasks, including the Stroop task. The
Stroop interference effect, as measured by the difference in the reaction times, provides an
insight to inhibition (I-N) and facilitation (I-C) controls.31 The results are in parallel with most
of the findings in literature where an impairment in executive functions in neuropsychiatric
patients was observed for many tasks including the Stroop task. There are several methods
to further quantify the behavioral results of the stroop test.62 These are usually in form of combi-
nations of error (accuracy) rates and reaction times. This paper used a simpler metric: CQ, where
the difference in executive functions of these four groups were emphasized better than any one
parameter alone. In fact the classification accuracy of this metric between healthy controls and
diseased subjects was 76.25% as seen in Fig. 8(a). In a study by Erdodi et al.,60 classification
accuracy of inverted Stroop test metrics between healthy controls and patients that were clin-
ically referred for neuropsychological assessment were found to be less sensitive (14% to 25%),
but comparably specific (85% to 90%) while the findings in this study were contradictory with
very high sensitivity (100%) but less specificity (77.6%) for this metric. Certainly there are many
differences especially in the choice of subject groups, the Stroop test employed and the param-
eters used in the analysis of that study and this one, but it is evident that the behavioral param-
eters alone cannot yield high accuracies in classification for neuropsychological assessment.

Table 3 Reaction times in milliseconds (mean ± standard deviation). Number of subjects are
given in parentheses.

Group NS CS ICS p-value

Controls 975.7� 134.7 1041.8� 190.8 1170.6� 227.6 0.0375�

Migraineurs 1233.0� 394.6 1352.2� 345.9 1560.7� 576.8 0.0748

OCD 1593.1� 453.3 1631.5� 400.7 2019.7� 512.7 0.006�

Schizo 1750.9� 458.1 1815.5� 323.4 2202.2� 346.4 <0.0001�

p-value <10−7 <10−9 <10−9 0

Table 4 Accuracy rates in percentages (mean ± standard deviation).

Group NS CS ICS p-value

Controls (13) 98.2� 2.2 97.2� 4.7 92.8� 7.4 0.0297�

Migraineurs 92.0� 18.2 95.2� 8.4 82.3� 24.9 0.0815

OCD 98.4� 2.5 96.8� 4.4 86.3� 17.5 <0.001�

Schizo 91.4� 13.9 90.4� 13.7 69.6� 21.4 <0.00001�

p-value <10−7 <10−9 <10−8 0
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4.2 fNIRS Findings

GE has been proposed and shown to be a robust and reliable biomarker in many fNIRS
studies.21,64–69 In most cases resting fNIRS data were used to calculate the FC matrices. GE
values were always computed after a threshold value was adapted. This threshold value was
an actual correlation coefficient value. Since a fixed correlation coefficient threshold would yield
different number of non-zero entires in the binarized FC matrices, the GE values would be
incomparable (For a good review on the appropriate choice of a threshold value, we can refer
to Ref. 70). Regardless of the choice of PCA components and threshold values, almost all of
the studies concluded that as the cognitive impairment increases, global network efficiency
decreases compared to healthy controls. GE is also shown to be affected by age.64,71 The
GE based findings in this paper are in alignment with the literature, where a decline in GE was
observed for neuropsychiatric patients. On average across all stimulus types, there was a 17%
reduction in the GECM of migraineurs, 20% of OCD, and 48% of schizophrenics from controls
as can be inferred from Table 6.

4.3 On the Classification Accuracy of NCR

There have been several studies that investigated the classifier accuracy for schizophrenia
patients.72–78 Yet, the same cannot be said for migraine and OCD patients. Table 9 is a selection
of such studies where search words: {fNIRS, classification, schizophrenia, and accuracy}
were used.

Most of the classification studies including schizophrenia patients reported a classification
accuracy in the range of 76% to 89.7% as seen in Table 9. This study achieves at a 100% accu-
racy score for schizophrenia patients as seen in Fig. 8(a). The strength of this value is inherent to
the computation of the NCR where behavioral and physiologic data are fused. The accuracy is
lower between neuropsychiatric patients as seen in Fig. 8(b) columns M-O, M-S and O-S with
M-S being the highest at 89.81%. This is an indicator that cognitive impairments in migraine
patients might not be as severe as the OCD and schizophrenics, which are close to dissociative
disorder diseases.

4.4 Proposal

This study is yet another one that proposes an algorithmic approach to the data analysis pipeline
of fNIRS studies. The aim is to improve the clinical significance of the features extracted from
fNIRS recordings so as to pledge an everlasting position of fNIRS in clinical settings. Only a
handful studies investigated the differential diagnostic accuracy of fNIRS features.85–89 To start-
off, here is a checklist of specific expectations of any fNIRS-based algorithmic approach for a
clinical study:

E1: Provide clinically relevant information regarding brain physiology

E2: Provide strong specificity for clinical data

E3: Provide a better statistics than behavioral data alone

E4: Provide an easy and applicable/adoptable algorithm

fNIRS has been one of the few instruments that can provide insight to brain neurophysiology
non-invasively and rapidly. Yet, these two offerings should match with the expectations listed
above. Since fNIRS provides information regarding the cerebrovascular reactivity to cognitive or
physiological stimuli, we expect that any measurement from patients with brain disorders should
provide insight to neurobiology of the disease.

To address E1, fNIRS is famous for bestowing local hemodynamic activity. Moreover, GE
extracted from the dynamic changes of such a local data elucidate the level of collaborative effort
exerted during a cognitive task. So with a number such asGE one can capture the hemodynamics
of cognition.

To address E2, several groups reported medium to high accuracies for classification of fNIRS
signals.29,34,73,74,79,81 These studies mostly included two groups: healthy controls and a diseased
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group. No multi-group comparison has been attempted with fNIRS, unlike fMRI.34 NCR derived
from CQ and ratio of GEs are shown to be highly specific for diseases.

To address E3, so far the statistical significance of behavioral data have been praised in many
studies in classifying patient groups. fNIRS is expected to improve the statistics and this is what
NCR offers. It gives a higher accuracy in separating healthy from diseased brain, much like a
blood pressure monitor.

To address E4, a valid critique is that the proposed approach is easy and applicable. It is more
of an iterative approach than a theoretical one. Yet, the FC-ðPCÞ2 seems to do the trick in sepa-
rating the FC matrices.

Interestingly there are not many studies of other psychiatric diseases. Still there are pioneer-
ing works on autism spectrum disorder,14 obsessive compulsive disorder,10 depression, and
migraine.23 There is always those who have not lost faith in fNIRS.11,12 A very hopeful study
by Ehlis et al.9 points us to the right direction: future studies should also focus on the usefulness
of fNIRS as a supportive tool for choosing the most promising treatment approach for a specific
patient. Using fNIRS, neurophysiological markers that might predict treatment outcomes (and
may thus be relevant for personalized medicine) could be easily identified.9 Several studies
actually achieved this ambitious goal set by Ehlis et al. For a good review of use of fNIRS
in psychiatry, please see Refs. 9, 90, and 91, specifically in autism,14 and its role in neurofeed-
back,92 in pain,93 and in neurology.94 Only a handful of them are listed in Table 9. This study is
the first in several aspects: (1) to show a high specificity of fNIRS for various types of neuro-
psychiatric diseases (more than 2); (2) in providing an fNIRS-derived biomarker (namely the
NCR) with very high accuracy that is also clinically relevant; and (3) in that it does not attempt to
find a correlation between behavioral data and physiological data, rather it combines them since
behavior cannot be produced without physiological activation. As observed by James, “A sci-
ence of the relations of mind and brain must show how the elementary ingredients of the former
correspond to the elementary functions of the latter.”95

5 Conclusion

This study is an extension of a previous work, which concluded that a PC-based approach should
be preferred when generating the FC matrices. Separating the FC into a CM and DM network led
to the ratio of the GE values calculated from these two matrices. This ratio was then multiplied
with the CQ, which is a direct measure of cognitive load. Therefore, a new biomarker, NCR,
was generated and proposed. The mean NCR across all stimuli for four subject groups in
Table 10 (NCRðControlÞ ¼ 210� 66, NCRðMigraineÞ ¼ 89� 34, NCRðOCDÞ ¼ 57� 20,
and NCRðSchizoÞ ¼ 38� 15, p < 10−10) gives the best classification accuracy with respect
to ROC between healthy controls and diseased subjects (ACCUR ¼ 96.25%, and
AUC ¼ 99.31%), much better than the accuracies obtained from only CQ, behavioral
parameter (CQðControlÞ ¼ 94� 16, CQðMigraineÞ ¼ 73� 24, CQðOCDÞ ¼ 59� 18, and
CQðSchizoÞ ¼ 48� 15, p < 10−8) where (ACCUR ¼ 81.2%, and AUC ¼ 89.3%). The results
are all in favor of this biomarker. So we might conclude that fNIRS-derived NCR is a
strong candidate as a biomarker for neuropsychiatric diseases. It can safely be used in diagnosis
and prognosis of neuropsychological assessments of at least a group of neuropsychiatric
disorders.

6 Appendix

The following tables present the values of the figures in the manuscript.

6.1 Behavioral Data

The following Table 5 is formed from Tables 3 and 4.
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6.2 GE Values

Table 5 CQ values (mean ± standard deviation).

Group NS CS ICS p-value

Controls 102.42� 14.15 96.00� 16.87 82.44� 19.19 0.0147�

Migraineurs 82.80� 27.50 75.04� 19.68 61.41� 28.62 0.0341�

OCD 66.85� 19.49 63.12� 16.49 47.18� 19.44 0.0024�

Schizo 56.99� 19.77 52.05� 14.62 33.53� 15.19 <0.00001�

p-value <10−7 <10−9 <10−8 <10−8

Table 6 Optimized GECM values computed from FCCMs (mean ± standard deviation).

Group NS CS ICS p-value

Controls 0.2951� 0.0482 0.3478� 0.0543 0.3207� 0.0634 0.0326

Migraineurs 0.2821� 0.0275 0.2342� 0.0321 0.2784� 0.0287 0.0017

OCD 0.2350� 0.0662 0.2768� 0.0549 0.2548� 0.0549 0.0197

Schizo 0.1793� 0.0527 0.1587� 0.0701 0.1624� 0.0635 0.0482

p-value <10−10 <10−10 <10−10 <10−10

Table 7 Optimized GEDM values computed from FCDMs (mean ± standard deviation).

Group NS CS ICS p-value

Controls 0.1554� 0.0482 0.1621� 0.0543 0.1710� 0.0634 0.78

Migraineurs 0.2246� 0.0275 0.2210� 0.0321 0.2255� 0.0287 0.82

OCD 0.2901� 0.0891 0.2728� 0.0662 0.2766� 0.0549 0.71

Schizo 0.2153� 0.0527 0.2183� 0.0701 0.2292� 0.0635 0.70

p-value <10−4 <10−4 <10−4 <10−10

Table 8 ROC analysis of mean values of features. SENS: sensitivity, SPEC: specificity, ACCUR:
accuracy, AUC: area under the curve.

Feature SENS SPEC ACCUR AUC

CQ 100 77.6 81.2 89.3

GE 92.3 89.6 90 95.1

NCR 100 95.5 96.3 99.3
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6.3 NCR Values

Table 9 Classification performances of fNIRS studies.

Study Diseased group Features Classifier Accuracy

Chen et al.72 Schizophrenia GLM based SVM 85%

Dadgostar et al.75 Schizophrenia Time series SVM 87%

Einolou et al.29 Schizophrenia Energy SVM 84%

Eken et al.79 SSD FC based SVM 82%

Hahn et al.78 Schizophrenia Time series LOOCV 76%

Ji et al.73 Schizophrenia FC based SVM 89.7%

Shoushtarian et al.80 Chronic tinnitus FC based Naïve Bayes 78.3%

Xu et al.81 ASD Time series CNN & LSTM 93.3%

Yang et al.74 Schizophrenia FC based SVM 84.67%

Yang et al.82 MCI Time series CNN 98.61%

Yang et al.83 MCI FC based CNN 95.81%

Yoo et al.84 MCI Time series SVM 79.49%

Table 10 NCR values computed from Table 11 (mean ± standard
deviation).

Group NCR

Controls 209.89� 65.67

Migraine 88.50� 33.97

OCD 57.36� 20.28

Schizo 38.22� 14.52

p-value <10−10

Table 11 NCR values computed from Eq. (7) (mean ± standard
deviation).

Group NS CS ICS p-value

Controls 225.97� 125.93 226.84� 80.88 176.85� 80.35 0.342

Migraine 104.00� 40.53 81.09� 28.04 80.41� 45.20 0.098

OCD 57.68� 23.92 68.54� 27.39 45.88� 22.78 0.017

Schizo 49.48� 25.05 39.68� 15.37 25.48� 14.43 <10−5

p-value <10−10 <10−10 <10−10 <10−10
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