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Abstract. Ultrasound generation from an optical fiber, based on the photo-
acoustic principle, is a promising approach to many ultrasonic applica-
tions, specifically those requiring wide bandwidth and compact size in
order to achieve high resolution as well as the capability of being operated
in limited space. A fiber-optic ultrasound generator using gold nanopores
is reported. The gold nanopores, having high absorption efficiency, were
fabricated using a focused ion beam (FIB) on the fiber endface, which was
excited by a nanosecond laser in order to generate ultrasound signals via
the photoacoustic principle. Experimental results demonstrate that these
wide bandwidth ultrasound signals can be generated by this compact
fiber-optic ultrasound generator fabricated using a FIB. © The Authors.
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1 Introduction
Ultrasound transducers are widely used in most ultrasound
nondestructive testing and medical ultrasound imaging appli-
cations.1,2 High-frequency (>30 MHz) and high-resolution
(<100 μm) ultrasound transducers have become increasingly
demanded in most advanced applications including derma-
tology,3 ophthalmology,4 intravascular imaging,5 tomogra-
phy,6 and small animal imaging.7 They are also valuable
imaging tools for noninvasive studies of disease progression
and regression.8,9 With the conventional approach, which
relies on a piezoelectric transducer, it is difficult to exceed
a frequency of 20 MHz, and to minimize to a micron
scale size for high spatial resolution.10

An attractive alternative to a traditional piezoelectric
ultrasound transducer is an all-optical ultrasound transducer
with both optical ultrasound generation and detection.11 A
photoacoustic ultrasound transducer provides significant
advantages over a conventional piezoelectric one including
a wide bandwidth and compact dimension. The optical ultra-
sound generator converts pulsed laser energy, exerted on the
photoabsorptive layers, into thermoelastic waves.12 The
center frequency and bandwidth of the generated ultrasound
is determined by the incident laser pulse.13 One benefit of
the ultra-fast laser technology is that laser pulses with short
pulse widths can yield wide bandwidths of the ultrasound
above 50 MHz.14 In addition, the size and spacing of each
generation element, which is defined by the focal spot of
a laser beam, can be easily reduced to several microns.15

The spatial resolution enhancement could be significantly

achieved by applying the photoacoustic technique on an opti-
cal fiber, typically with a diameter of 125 μm.16 Furthermore,
an all-optical operation circumvents the need for electrical
connections which cause the problem of electromagnetic
interference. These unique features make the fiber-optic
ultrasound transducers suitable for various advanced ultra-
sound applications.

However, the critical problem of the photoacoustic ultra-
sound generator is the relatively low amplitudes of the
generated ultrasound signals, which result from a limit to
the maximum laser power density in order to avoid damage
to the photoabsorptive material. The photoacoustic energy
conversion efficiency can be enhanced by increasing the
optical absorption coefficient of the photoabsorptive
material.17 It has also been experimentally explored that
some gold nanostructures are good absorption materials
due to their high optical energy absorption capability at
the plasmon resonant frequency.18–20 Compared to random
gold nanostructures, periodic gold nanostructures have
higher absorption efficiency due to increased interaction
time by localized surface plasmon.21 Moreover, the thickness
of the absorption material may affect the bandwidth as well.
As the ultrasound propagates along the material, high fre-
quency components attenuate faster than low frequency
components. Therefore, a thin layer of gold nanostructure
with periodic pattern is preferred. Furthermore, most of
the photoacoustic ultrasound generators reported in the
literature were bulky on substrates. With our work, we
made an effort to miniaturize the device into ∼100 μm,
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which is possible for the ultrasonic imaging applications in a
restricted space.

For the fabrication of periodic gold nanostructures upon
the optical fiber endface, a number of traditional micro/
nano-fabrication tools have been brought to bear on the chal-
lenges. Submicron gold structures can be fabricated using
femtosecond laser direct writing.22,23 However, these meth-
ods have limitations such as limited precision and product
geometry. Some delicate structures on fibers are constructed
using micro-electro-mechanical systems.24–26 However, they
require a mask and the resolution is on a micrometer scale.
Nanoimprint enhances the geometric accuracy and overall
quick productivity in a nanometer scale, however, the pattern
mold cannot be conveniently applied to the fiber endface.27

Besides these techniques, the self-assembling technique is an
exceptional method of bonding metal nanoparticles to fibers.
However, it also has disadvantages including low concen-
tration and random distribution which constrain the three-
dimensional nanoscale fabrication upon the fiber endface.28

The focused ion beam (FIB) can be used for this work
because of its distinctive advantages such as high flexibility
direct writing, ultra-precision processing, room temperature
conditions, and no post-processing.29

In this paper, a fiber-optic photoacoustic ultrasound gen-
erator that has wide bandwidth and miniature size using gold
nanopores was achieved. The FIB was used to mill the gold
nanostructures directly on the fiber endface. The procedure
used to mill high-quality and high-precision nanostructures
on fiber at the nanometer scale was examined to illustrate the
versatility and advantages of the FIB techniques for this
application. Some fiber samples with the fabricated gold
nanopores were used to demonstrate the photoacoustic ultra-
sound generation. It is proved that ultrasound signals can be
generated by this approach and that the fiber-optic ultrasound
generator can potentially be used in advanced ultrasonic
applications.

2 Fabrication

2.1 Fiber Preparation

Single-mode fibers (SMF) with core/cladding diameters of
8∕125 μm and multimode fibers (MMF) with core/cladding
diameters of 62.5∕125 μm were used. The protective coating
was removed from a 1-mm long section after the fiber tip was
cleaved. The cleaved angle of the fiber endface was con-
trolled to an accuracy of 0.5 deg as measured by a fusion
splicer (Fitel S177A). A gold layer with a thickness of
60 nm was sputter-coated onto the fiber endface. This
gold layer served several purposes. First, it protected the
fiber surface and prevented charging of the insulated fiber
material. In effect, the quality of scanning electron micro-
scope (SEM) imaging and FIB milling was increased.
Second, after FIB patterning of the gold layer, the remaining
gold sub-wavelength apertures or rods on the fiber endface
were directly used as the functional material of the fiber-
optic ultrasound generator. The objective gold nanopores
on an optical fiber are shown in Fig. 1 with both top
view and side view. The fiber tip was placed steadily upon
the FIB stage using a conductive tape. The fiber pigtail was
winded and pasted for further splicing and testing. The FIB
stage was adjusted such that the FIB beam faced the fiber
endface vertically.

2.2 FIB Conditions

A computer-controlled dual-beam FIB instrument (FIB-
SEM, Auriga series, Carl Zeiss, Oberkochen, Germany)
was employed to create different gold nanopores on the
fiber. The instrument used a combination of SEM and
FIB with two focused beams on the coincidence point. In
addition to providing SEM imaging, this instrument can
rapidly mill materials via ion sputtering. Before fabrication,
most of the patterning conditions need to be optimized spe-
cifically to the fiber sample. Accurate pattern shaping is
unachievable at high energies due to large protrusions and
nanopores formations; however, it can be obtained with
low energy ions. Therefore, in order to significantly decrease
the amount of redeposition, the gallium ion energy was set at
30 keV or lower if necessary. If a superior resolution is
required it would be preferable to use a protective layer
with the sample. In this case, the fiber endface was initially
coated with a gold layer with a thickness of 60 nm to improve
conductivity. Ion scattering from walls is another critical fac-
tor to the large feature depth. In this case, most of the nano-
structures were shallow, so the scattering could be neglected.

For operation of the FIB, factors including the focus,
astigmatism, and proper magnification of the particular
ion beam aperture must be controlled to obtain high-quality
nanostructures. Other important parameters to be adjusted
include dwell time, beam current, scanning strategy, and
the number of passes. Dwell time refers to the time interval
that the beam spends on a single milling spot, and is set
according to the milling rate and the expected milling
depth. Note that the beam spot diameter is a theoretically
calculated value based on a Gaussian distribution and
depends on the beam current. Therefore, it should be
properly selected according to the nanopore feature size.
Line scanning is typically used for rectangular shapes
whereas spiral scanning is typically used for circular shapes.
The number of passes for each scanned pattern is also critical
to milling rate and sidewall slope. In this case, the beam
diameter was controlled between 3 and 300 nm by varying
beam current 1 pA and 4 nA at a consistent incidence
angle of 0 deg. Although FIB image could also be used
to measure the feature dimension, this imaging mode dam-
ages the completed pattern severely. The SEM mode was
used to monitor the FIB created surface features in situ
with a 54-deg angle, and to measure the feature size with
angle compensation.

Fig. 1 Schematic diagram of the objective gold nanopores on the
fiber endface.
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2.3 Gold Nanopores

The key to the FIB milling technology is to operate FIB with
the proper beam size, current, and energy used to remove a
required amount of material from a pre-defined location and
obtain high-precision structures in a controllable manner. In
order to ensure the milling efficiency, the beam energy trans-
ferred from the ions to the target substrate should be suffi-
ciently high. In order to ensure the milling accuracy, milling
strategy such as a number of passes is important to prevent
severe redeposition. For different samples and feature sizes,
we need to select a proper beam current to balance the fab-
rication accuracy and the yield. For this case, to achieve a
feature size of ∼100 nm, beam currents less than 10 pA
was used to ensure the fabrication accuracy. Since the theo-
retical beam probe size of 10 pA about 13 nm is much
smaller than the objective feature size of ∼100 nm, it is
still potentially advantageous to further increase the beam
current for higher throughput. The objective nanopores
were fabricated by FIB milling nanopore array. After the
removal of the gold material within the pore areas, the
remaining gold materials form the gold nanopore array as
shown in Fig. 2. Figure 2(a) shows gold nanostructure on
the core area of a fiber endface. As shown in the embedded
Fig. 2(b), FIB is flexible to align, mark, and fabricate various
nanostructures on the fiber endface. In the zoom-in Fig. 2(c),
the gold nanopores are 80 nm in diameter and 130 nm in
spacing.

Since only the fiber core area works for the photoacoustic
ultrasound generation, only the core area was milled with the
desired gold nanopores. Figure 3(a) and 3(b) shows the over-
view of the SMF before and after fabrication, respectively.
Total milling time was about 30 min when a beam current
of 10 pA was used.

3 Experiments

3.1 Photoacoustic Principle

As shown in Fig. 4, the fiber-optic photoacoustic generator
is an optical fiber endface coated with the FIB-milled gold
nanopores. When laser pulses are coupled into the fiber
and guided to the gold nanopores, a portion of the optical
irradiation energy is converted into thermal energy in the
gold nanopores due to the high absorption efficiency.
Then, due to the thermal effect, mechanical vibrations result
from thermal expansion. Finally, ultrasound is excited and
propagates in the adjacent medium. The advantage of this
method is that the ultrasound pulse profile can be tailored
by the laser pulse profile. This means broad bandwidth
ultrasound can be generated by ultrashort laser pulses.

3.2 Experimental Setup

After FIB patterning of the gold layer on the fiber endface,
the fiber sample was spliced with a fiber coupler (F810SMA-
543, Thorlabs, Newton, New Jersey) to a nanosecond laser.
Related experiments were performed in order to evaluate the
photoacoustic generation efficiency through the gold nano-
pores. The schematic diagram of the experimental setup is
shown in Fig. 5. A 532 nm Nd∶YAG nanosecond laser
(Surelite series, Continuum, Santa Clara, California) with
a pulse duration of 5 ns and a repetition rate of 10 Hz was

Fig. 2 (a) Gold nanostructure on the core area of the fiber endface;
(b) zoom-in FIB alignment mark and nanopores on the fiber endface;
and (c) gold nanopores with 80 nm in diameter.

Fig. 3 (a) Gold coated SMF before fabrication and (b) gold coated SMF after fabrication.

Fig. 4 Schematic diagram of the photoacoustic principle.
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used as the optical radiation source. The laser beam was split
into two beams by a beam splitter. One of the beams was
input into a photodetector (PDA10CS, Thorlabs) as a refer-
ence signal and another beam was coupled into the fiber pat-
tern through the coupler. The gold nanopores were located
directly on the fiber endface core area. The laser pulse was
excited on the nanocomposite through the optical fiber.
A hydrophone (HGL-0200, Onda, Sunnyvale, California)
was placed about 1 to 2 mm away under water to collect
the acoustic signals. The reference signals and the acoustic
signals were transmitted to a data acquisition system
(M2i.4032, Spectrum, Grosshansdorf, Germany) with a sam-
pling rate of 50 MHz.

Figure 6(a) shows a photograph of the overall experi-
mental setup. Translation stages were used to control the dis-
tance between the fiber tip and the hydrophone. Figure 6(b)
shows an enlarged photograph of the miniature fiber-optic
ultrasound generator with gold nanopores on it. Compared
to the piezoelectric hydrophone, the fiber-optic ultrasound
generator is much smaller, with a diameter of about 125 μm.

4 Results and Discussions
Three parameters of the gold nanopores including thickness,
spacing, and diameter affect the optical absorption efficiency.
A larger thickness or smaller diameter leads to a narrower
resonant peak and a rather uniform decrease in the absorption
intensity. The absorption peak shifts to longer wavelength by
increasing the spacing.30 The tested gold nanopores located
on the MMF endface were 60 nm in thickness, 200 nm in
spacing, and 80 nm in diameter, so that the absorption
peak was close to the excitation laser wavelength. The thick-
ness could be controlled well by using a sputter coating proc-
ess. During the FIB milling process, the ion beam focused on
the nanopore areas, whereas the thickness of the rest of the
gold area was kept the same as the coating thickness. The
spacing of 200 nm and diameter of 80 nm were precisely
fabricated by FIB. Figure 7 shows the SEM images of the
gold nanopores in a different magnification. The flaws of
the periodic pattern were caused by the fluctuation of the
gold layer deposited on the fiber endface.

Figure 8(a) shows the ultrasound pulse that was generated
from the fiber-optic ultrasound generator with the gold nano-
pores as shown in Fig. 7. The distance between the hydro-
phone and the fiber tip was about 1.5 mm. The excited
optical pulse energy was about 3 μJ and the amplitude of
the generated ultrasound signal was 2.73 kPa. The energy
conversion efficiency can be improved by using other
gold nanopatterns with different features, such as shape,
size, spacing, and layer number, which possess higher optical
energy absorption. A 3 dB bandwidth was 7 MHz as shown
in Fig. 8(b). The bandwidth can be improved by using a
shorter laser pulse.

Fig. 5 Schematic diagram of the experimental setup.

Fig. 6 (a) Photograph of the overall experimental setup and (b) enlarged photograph of the miniature fiber-optic ultrasound generator with gold
nanopores on it.

Fig. 7 The tested gold nanopores were 60 nm in thickness, 200 nm in spacing, and 80 nm in diameter on the MMF endface (a) at magnification of
104 k×; (b) at magnification of 135 k×.

Optical Engineering 065005-4 June 2013/Vol. 52(6)

Tian et al.: Fiber-optic ultrasound generator using periodic gold nanopores fabricated. . .



5 Conclusions
This paper reports a fiber-optic ultrasound generator having a
wide bandwidth and miniature size and that uses gold nano-
pores. The gold nanopores were fabricated by milling peri-
odic gold nanopores directly onto the optical fiber endface
using FIB. The experimental results showed that an ultra-
sound signal with amplitude of 2.73 kPa and a 3-dB band-
width of 7 MHz could be generated by the fiber-optic
ultrasound generator. It proved that ultrasound signals
could be generated by this miniature fiber-optic device
which could be used in the advanced ultrasonic applications.
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