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Abstract. An image toning method for low dynamic range image compression is presented. The proposed
method inserts tone mapping into JPEG baseline instead of postprocessing. First, an image is decomposed
into detail, base, and surrounding components in terms of the discrete cosine transform coefficients.
Subsequently, a luminance-adaptive tone mapping based on the human visual sensitivity properties is applied.
In addition, compensation modules are added to enhance the visually sensitive factors, such as saturation,
sharpness, and gamma. A comparative study confirms that the transmitted compression images have good
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1 Introduction
The luminance dynamic range in the real world is signifi-
cantly large and the dynamic range of the eyes can shift
in response to the change or intensity of scenes.1 In contrast,
image sensors that capture the luminance dynamic range are
limited to a certain intensity range, which is relatively very
low. Thus, there is a substantial difference between an image
captured by a sensor and the perceived scene.2 To reduce this
discrepancy, researchers have proposed a number of global
and local tone mapping methods. The global tone mapping
method using only one mapping function has a relatively
simple computation, though it is insufficient to address
wide dynamic range, whereas the local tone mapping method
has an adaptive function that may vary depending on spa-
tially adjacent pixels. Furthermore, certain local methods
adopt human visual properties for local contrast enhance-
ment, such as image color appearance model (iCAM)-based
methods,3,4 logarithmic mapping,5 local eye adaptation,6 and
histogram adjustment.7 These make images similar to real
scenes that an observer would perceive. It is widely
known that human vision responds to luminance in such a
manner that individual visual cells adjust each gain accord-
ing to locally adapted luminance. Moreover, various experi-
ments that help us understand the instinctive nature of human
vision have been conducted by psychophysicists. The results
of the experiments are usually statistical data and need to be
created as the functions so that they are easy to use. Recently,
tone mapping operators are extended into video streams.8,9

These methods use temporally close frames to smooth out
abrupt changes of luminance.10 In addition, for surveillance
system, content-based tone mapping has been proposed.11 It
presents inter and interframe object based tone mapping for
the enhancement of regions of interest (ROIs) in video
streams. Essentially, this content-based method has piece-
wise global tone mapping based on features from detected
ROIs. Generally, local tone mapping methods have better

performance because the human visual system is a spatial
correlation system sensitive to regional relative brightness,
rather than a system described globally single tone curve.4

Local tone mapping methods usually use image decom-
position for edge preservation. Textures and detail informa-
tion can be removed when a dynamic range is largely
compressed.3,12,13 The procedure for local tone mapping
using image decomposition is shown in Fig. 1. The detail
layer is preserved, whereas the base layer is compressed
by tone mapping. The base layer has large features and is
extracted by filtering the input image. The detail layer is
a subtraction of the base layer from the input. After com-
pressing the base layer, it is recomposed with the detail
layer. The details are not suppressed through tone mapping.
Therefore, image decomposition is a necessary procedure for
local tone mapping methods.

This paper proposes a luminance-adaptive local tone map-
ping method in the compression field for the contrast
enhancement of low dynamic range images. Tone mapping
is composed of simple local functions related to human
vision properties that respond to luminance change. In
order to achieve this, we investigate human visual sensitivity
properties using two luminance adaptation functions for sim-
ple or complex stimuli and contrast sensitivity functions
(CSFs). Our image enhancement is based on these lumi-
nance-adaptive human factors. In addition, we propose a
novel image decomposition method in the compression
domain using discrete cosine transform (DCT) band split-
ting. The image decomposition is not only a necessary
step for local tone mapping, but also an initial step required
for merging the proposed tone mapping with JPEG baseline.
The previous spatial domain based methods require several
Gaussian kernels for multiscale tone mapping and detail-
base separation. Moreover, edge stopped blurring techniques
to prevent halo artifact are computationally intensive.13 The
proposed method does not use any Gaussian kernel for edge
preserving and reduces the complexity of the process for
adjusting sharpness and colors by cooperating with DCT
coefficients. Consequently, it performs well in terms of*Address all correspondence to: Sung-Hak Lee, E-mail: shak2@ee.knu.ac.kr
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simplicity of the process, detail preserving, tonal rendition,
and halo artifact elimination. Further, for postcomplemen-
tary processing, mask-based sharpness enhancement, visual
gamma correction, and color compensation are accomplished.

The remainder of this paper is organized as follows. In
Sec. 2, we discuss the luminance-adaptive human factors rel-
evant to our research. In Sec. 3, we present the proposed
algorithm for image contrast enhancement using mask-
based image decomposition and luminance-adaptive local
tone mapping. In Sec. 4, we describe complementary proc-
esses adopted for further image enhancement. In Sec. 5, we
present simulations and comparative results. Finally, in
Sec. 6, we provide concluding remarks.

2 Luminance-Adaptive Human Vision Factors
Human vision accommodates variations in luminance through
a process called light adaptation. In this section, we focus on
three human factors in light adaptation: two types of bright-
ness functions, proposed by Stevens and Stevens14 and
Bartleson and Breneman,15 and contrast sensitivity func-
tions.16 The brightness function represents the nonlinearity
between perceived brightness and measured luminance of
the same patch under various intensities of adapting lumi-
nance. According to the brightness function proposed by
Stevens, brightness is increased sharply when human vision
perceives the luminance of a patch to be increasing from
darkness. It changes linearly over the threshold as shown
in Fig. 2 on a logarithmic scale. Moreover, the slope and
threshold of a linear area increase with adapting luminance.
In other words, in order for the perceived contrast ratio with
brightness to be preserved, the physical contrast ratio with
luminance is decreased with an increase of adapting lumi-
nance. In contrast to the simple patch experiments conducted

by Stevens, Bartleson and Breneman conducted experiments
to predict the brightness for a complex stimulus. According
to the results by Bartleson and Breneman, brightness percep-
tions of complex scenes, such as images, can be described by
both a power term and an exponential decay term.

Human vision is more sensitive to change or difference
than the absolute value of luminance. Generally, image hav-
ing a high contrast ratio is more distinct at lower levels of
adaptation.17,18 However, because of nonlinearity between
perceived brightness and measured intensity under different
adaptations, it is impossible to fix the physical contrast ratio
that is suitable for an image with various intensity ranges. To
address this problem, Lee et al. obtained a curve representing
the relation between threshold luminance and adapting lumi-
nance for constant brightness perception using the Stevens’
results and Bartlenson–Breneman’s functions.19 As shown in
Fig. 3, the curve represents the highest and lowest luminance
perceived by human vision at each adapting luminance.
Based on these extreme luminance values, the necessary con-
trast ratio at each adapting luminance is shown in Fig. 4. For
an identical perception of a certain contrast ratio, human
vision requires a high luminance ratio at a low adapting lumi-
nance, and vice versa; it requires a relatively low luminance

Fig. 1 Procedure for image decomposition.

Fig. 2 Brightness function proposed by Stevens.

Fig. 3 Perceived extreme values for adapting luminance.

Fig. 4 Contrast ratio in luminance for adapting luminance.

Optical Engineering 113111-2 November 2014 • Vol. 53(11)

Lee et al.: Visual sensitivity correlated tone reproduction for low dynamic range images. . .



ratio at a high adapting luminance. In addition, to apply this
nonlinearity to Bartleson–Breneman’s functions, Lee et al.
proposed visual gamma estimation for varying adaptation
shown in Fig. 5. This shows that the exponent of the intensity
function increases with increasing adapting luminance.
Photographic images require gamma correction based on
the estimated visual gamma.

Additionally, we examine the properties of the CSF of
human vision. The CSF specifically refers to the relation
between contrast sensitivity and spatial frequency. In gen-
eral, the CSF is measured by grating patterns that have
changeable contrast and spatial frequencies. Contrast sensi-
tivity is an inverse of the detection threshold where the con-
trast of a grating pattern cannot be perceived.20 As a related
study, there is the experiment of van Meeteren and Vos.16

According to their experiment, human vision is more sensi-
tive to the contrast of grating patterns in high adapting lumi-
nance. Furthermore, for higher adapting luminance, contrast
sensitivity is saturated. Figure 6 shows the results of van
Meeteren and Vos. The CSF has band-pass shape and the
maximum value of the CSFs increases for higher adapting
luminance.

3 Proposed Algorithm
The proposed tone mapping method is integrated with the
procedure for baseline encoding in JPEG to ensure that
the input for tone mapping is not degraded. The method
is located between DCT and quantization in JPEG encoding.
The overview of the proposed method is shown in Fig. 7. An
input image has RGB color channels and color conversion
from RGB to YCbCr.21 In the compression field, the com-
ponent Ydct is decomposed into Surrounddct, Basedct, and
Detaildct. Surrounddct is necessary to calculate the local
adapting luminance La. Basedct and Detaildct represent the
base layer and detail layer, respectively. After mask-based
image decomposition, Base is developed into tmBase by

Fig. 5 Visual gamma in complex fields for adapting luminance.

Fig. 6 Contrast sensitivity function proposed by van Meeteren and Vos.

Fig. 7 Framework of the proposed algorithm.
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applying luminance-adaptive tone mapping functions
according to the Surround value; then, Detaildct and tmBase
are enhanced with respect to sharpness, gamma, and color.
The enhanced Detail 0dct and tmBase 0dct are combined into
Y 0
dct, which can continue with the JPEG baseline. The chro-

minance components CbCr are simply compensated by color
gain Gc.

3.1 Mask-Based Image Decomposition

Adaptive spatial filtering, such as the bilateral filter and sub-
band coding by Laplacian pyramid, have been introduced
for image decomposition.13,22–24 These methods usually
have computational complexity and calculation burdens.4

In JPEG baseline, DCT coefficients include information
for extracting sub-band images, which represent detail,
base, and surround.25 In this study, a simple method of imple-
mentation for image decomposition in the compressed field
is proposed. For detail preservation, an image is separated
into two layers: detail layer and base layer, which represent
the local texture and large features, respectively. The detail
layer represents local high-frequency components and the
base layer represents low-frequency components locally.
This is shown in Fig. 8. The input image is decomposed
using the bilateral filter. It shows the characteristics of the
base layer and detail layer, which represent locally blurred
images and local textures, respectively.

In JPEG baseline, DCT coefficients are computed within
an 8 × 8 pixel block. An image is converted from the spatial
domain to the frequency domain with an 8 × 8 pixel block
size. Thus, it is possible to separate frequency components
locally by splitting DCT coefficients in the block. Figure 9(a)
shows the DCT block and location of coefficients for band
splitting. The top-left coefficient is a direct current (DC)
component of the block image. We assign a DC component
to the surround layer, set DC and the low-frequency compo-
nents into the base layer and high-frequency components
into the detail layer. This image decomposition is imple-
mented with a masking method. Figures 9(b) and 9(c) are
macro masks for extracting the base layer and detail layer.
The use of DCT allows the integration of local tone mapping
in JPEG baseline.

For analysis of the proposed DCT mask, we compare a
DCT mask and bilateral filtering to separate base and detail
layers. Detail layer images through bilateral filtering and
DCT mask splitting are shown in Fig. 10. Blurring is distrib-
uted throughout strong edges across foreground regions
(trees) and background regions (sky and grass). As a result,
a halo artifact occurs around strong edges. Blurred white out-
lines near edges in the detail layer from bilateral filtering

causes the halo artifact. In contrast, because a proposed detail
separation is conducted in an 8 × 8 DCT block, the region
where halo artifacts appear could not be larger than an 8 ×
8 block. For pair comparison, tone mapped images are pro-
duced by the same tone mapping operator (TMO) for each
separated base layer. As shown in Fig. 11, the halo artifacts
differentially appear in result images. A DCT masking
method, consequently, leads to diminished halo effects.

3.2 Luminance-Adaptive Tone Mapping for
the Base Layer

Some tone mapping functions are based on an electrophysio-
logical model that predicts the response of photoreceptors
(rods and cones) at any adaptation level.6 This has usually
been adopted by other authors to model perceived bright-
ness; also, our tone mapping function is based on this
model. The shapes of functions are similar to an S-shaped
curve in the logarithm domain.26,27 The basis function is
given by

Iout ¼
ðIinÞn

ðIinÞn þ C
; (1)

where Iin and Iout are the intensities of input and output
images, respectively, and n and C are the parameters for
the S-shaped formulation.

This basis function has been inspired by a power-function
response in CIECAM02 (Ref. 28), which presents the post-
adaptation nonlinearities of cone responses. Figure 12 shows

Fig. 8 Images decomposed using the bilateral filter: (a) input image, (b) base layer, and (c) detail layer.

Fig. 9 Mask-based image decomposition in 8 × 8 discrete cosine
transform (DCT) block: (a) 8 × 8 DCT block, (b) mask for base
layer, and (c) mask for detail layer.
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a relation between luminance intensity and cone responses
for different adapting luminances. If the adapting luminance
is high, cone responses are right-shifted. Cones change their
sensitive area to a higher-intensity region for a higher adapt-
ing luminance. This processing, called as luminance adapta-
tion, is enacted in local cones on the retina. This is the reason
that cone responses are applicable in local tone mapping.

A proposed tone mapping function follows the basis func-
tion, Eq. (1), with luminance adaptation processing. From
Eqs. (2) to (6), analyzed brightness sensitivity properties
are applied to local tone mapping. The proposed parameters
are based on Stevens’ brightness functions and the analysis
conducted by Lee et al. Tone mapping functions are given by

tmBase ¼ 100ðαβBaseÞp
ðαβBaseÞp þ δ

; (2)

αβ ¼ βðα − αmÞ þ αm; (3)

α ¼ 0.003

Lw

�
La

maxðLaÞ
�
0.1

; (4)

β ¼
�
Lm for Lm ≤ 0.5

1 − Lm for Lm > 0.5
; (5)

δ ¼
�
0.39 expð5.80LmÞ − 0.37 for Lm ≤ 0.5

6.93 lnðLm − 0.41Þ þ 23.4 for Lm > 0.5
; (6)

where αβ is a compression level factor, δ is a luminance level
factor, α is a contrast sensitivity factor, β is a weighting
factor, and αm is a mid-point value of α. Lw is a local
white luminance map, La is a local adapting luminance map,
and Lm is relative global luminance, which is an average
value of normalized La. p accounts for the slope of the func-
tion, which is user-controllable and experimentally defined

Fig. 10 Detail layer images (a) by a bilateral filter and (b) by a proposed DCT mask splitting.

Fig. 11 Decomposed intensity images with tonemapped base and preserved detail (a) by a bilateral filter
and (b) by a proposed DCT mask splitting.

Fig. 12 Cone responses according to adapting luminance.
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as 0.6 here. It is similar to that of CIECAM02 but modified
for higher overall contrast.

In Eq. (3), the compression level factor, αβ, is defined as
the degree of local compression. It has been formulated only
for controlling the compression level without overall tone
changing. In the threshold luminance analysis shown in
Fig. 3, for identical contrast ratio perception under separate
adapting luminance, the physical contrast ratio must increase
for a lower adapting luminance. This is because the human
visual system is more sensitive to luminance change when
the adapting luminance is lower, so a higher physical contrast
ratio is needed to keep local detail consistent in a dim sur-
round viewing. In other words, to perceive a consistent
brightness contrast regardless of variations in the adapting
luminance, the image contrast should change in an exponen-
tial decay toward the higher adapting luminance. First, a con-
trast sensitivity factor, α, which is a basic factor of αβ,
determines the contrast range of the image. It is derived
from the physical contrast ratio according to the relative
adaptation luminance at each white luminance in Fig. 4. It
depends on the property that a high contrast ratio is required
at a low adapting luminance, whereas at a high adapting
luminance, a relatively low contrast ratio is sufficient. La

is set to 0.2 Lw. Lw is obtained from a Gaussian-blurred
intensity image in which the max luminance is set to
2000 cd∕m2 for outdoor scenes. In order to calculate Lw,
DC coefficients in DCT blocks are used, which are repre-
sented as Surrounddct in Fig. 6. Then, α is weighted by factor
β of Eq. (5). A weighting factor, β, is designed to meet
the compression balance and prevent intensity saturation at
higher La or gray out at lower La. β restricts a compression
range at higher and lower adapting luminances. Here, to
reduce the effect on the average luminance of an image
by β, a mid-point value αm of the overall α is fixed.

In Eq. (6), the luminance level factor, δ, is designed to
properly adjust an average luminance level of a resulting
image, based on the analysis of average luminance for con-
sistent brightness perception in Fig. 13. In viewing scenes
with uniform luminance distribution from dark to bright,
the average luminance values will have a linear relationship
with the adapting luminance, which is defined as ∼20% of
the white luminance value of each scene. However, the

human visual system has a nonlinearity property to perceive
average luminance for adapting luminance. Figure 13 shows
the difference between the physical average luminance and
the perceived average luminance. A bold line represents
median luminance values from visual threshold luminance
values of Fig. 3 and a dashed line shows the physical average
luminance for a uniform luminance distribution. From the
analysis, although adapting luminance linearly changes,
the perceived average luminance is not proportional to the
changing ratio of the adapting luminance. This means that
as the adapting luminance is lowered, human visions need
a relatively higher average luminance than physical lumi-
nance to preserve average brightness; on the other hand, a
relatively lower average luminance is needed for higher
adapting luminance. The larger δ generates a lower average
luminance level in the output image. On the contrary, if an
image is exposed for a short period, the small δ makes the
output image brighter. The parameter, δ, is derived based on
the ratios between the values of bold and dashed lines for
various adapting luminances; then it is adjusted using images
with broad adapting luminance ranges.

Figure 14 provides the resulting images with different val-
ues of αβ and δ. First, the compression level factor αβ con-
trols the overall dynamic range of the image. For a higher αβ
(weighting factor β: 2.5), the dynamic range of a represented
image is more compressed (the bright portions are dimmed
and the dark portions are lightened), whereas for lower val-
ues of αβ (weighting factor β: 0.5), the compression is lower.
Figure 14(c) has a smaller αβ value than Fig. 14(b), and the
dynamic range of Fig. 14(c) is larger than Fig. 14(b). αβ is
formulated for applying the visual contrast characteristic to
a tone mapping function according to Lee’s analysis for
Stevens’ brightness function, which is shown in Fig. 4.
Human vision requires a higher contrast ratio at a relatively
lower adapting luminance,. Second, a luminance level factor
δ effectively corrects an underexposed or overexposed
image. The represented image is toned down for a high
mean value of the input image based on the experimental
results of Fig. 3. As shown in Figs. 14(d) and 14(e), the
change of δ affects the average luminance of the output
image. Based on this analysis, the factor δ is formulated
for cooperating subjective experiments. These two fitted
functions in Eqs. (5) and (6) are shown in Fig. 15.

4 Additional Processing for Image Enhancement:
Gamma, Sharpness, and Color

4.1 Visual Gamma Correction

Overall tone reproduction through TMOs changes brightness
contrast in images and the perceived lightness (or relative
brightness) also changes as a function of different surround
luminance.1,19 In the experimental results of Bartleson and
Breneman for complex stimuli, the exponent of the lightness
function increases with increasing adapting luminance, so
photographic images require gamma correction based on
the estimated visual gamma. Photographic images typically
viewed in dim surroundings are reproduced using a power
function with a lower exponent value. Based on this, Lee
et al. proposed the visual gamma given by

γ ¼ 0.173 expð0.31 log LaÞ þ 0.329: (7)
Fig. 13 Average luminance analysis for consistent brightness
perception.
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The visual gamma as a function of the adapting luminance
means that gamma correction should be conducted adaptively
with local luminance as for human vision. Therefore, we adopt
the visual gamma as postprocessing after the proposed tone
mapping. The output of tone mapping, tmBase, is gamma
corrected according to the following equation:

tmBase 0 ¼ maxðBaseÞ
�

tmBase

maxðBaseÞ
�
γ

: (8)

4.2 Sharpness Enhancement

In order to compensate sharpness loss by the procedure for
JPEG baseline, we apply CSF-based sharpening gain, Rcsf , to
an existing mask-based unsharpening method. CSF refers to
the reciprocal of the minimum contrast ratio that human
vision can perceive at each spatial frequency. In JPEG base-
line, the sharpness enhancement is applied adaptively by
luminance adapting the CSF properties based on the mask-
based sharpness filter. We consider the contrast sensitivity of

Fig. 14 Toning results: (a) intensity image, (b) β ¼ 2.5, δ ¼ 0.1, (c) β ¼ 0.5, δ ¼ 0.1, (d) δ ¼ 0.1, β ¼ 0.5,
and (e) δ ¼ 4, β ¼ 0.5.

Fig. 15 (a) Contrast sensitivity factor, α, for adapting luminance La. (b) Luminance level factor, δ, for
relative Lm.
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human vision for which a high contrast sensitivity means that
objects are clearly visible. In order to design Rcsf , we com-
pute the relative contrast sensitivity as a function of adapting
luminance using certain maximum values at each adapting
luminance: 5, 50, 100, 500, 1000, and 2000 cd∕m2. The
maximum contrast sensitivity at 5 cd∕m2 is set as a reference
point. Figure 16 shows the ratio of maximum values to the
reference at each adapting luminance. The proposed gain,
Rcsf , is fitted with a rational function using these points,
which is given by

Rcsf ¼
2.4La þ 26.9

La þ 33.7
: (9)

The basis of the sharpness mask, Hðu; vÞ, is shown in
Fig. 17.29 The final sharpness enhancement using the CSF
properties is given as follows:

Hcsfðu; vÞ ¼ Rcsf ½Hðu; vÞ − 1� þ 1; (10)

Detail 0dct ¼ Detaildct �Hcsf ; (11)

where Detaildct is a detail layer that is decomposed using
a mask-based image decomposition.

4.3 Color Compensation

Generally, during the tone mapping with a simplified
s-curve, the ratio of RGB signals changes and color

saturation would be reduced.30 Although local tone mapping
is applied to only the luminance channel, dynamic range
compression generally results in an alteration of the ratio
of chromatic channels and a reduction of color saturation.
To correct this chronic defect of tone mapping, we adopt
a simple method for color compensation which restores
a ratio of color to luminance before tone mapping.30 This
method is given by

Cb 0 ¼ μGcðCb − 128Þ þ 128; (12)

Cr 0 ¼ μGcðCr − 128Þ þ 128; (13)

Gc ¼
tmBase 0

Base
; (14)

where the color gain Gc is designed to preserve the ratio and
a user-controlled factor μ, which prevents oversaturation, is
experimentally determined as 0.45. In our experiment, the
user-controlled factor of 0.45 is set for minimizing modified
CIEDE2000 between reference images and proposed
images. Modified CIEDE2000 considers only the hue and
chroma differences between these images.31

5 Simulations and Results

5.1 Objective and Subjective Assessment

To conduct quantitative comparisons of the proposed method
with existing tone mapping methods, several image assess-
ment tools were employed, including the universal image
quality index32 (UIQI), the no-reference perceptual quality
assessment33 (NRPQA), the colorfulness metric ratio34,35

(CMR), and structural fidelity of tone mapped images36

(S). According to the mathematical definition of UIQI, the
closer the UIQI value is to one, the better is the image quality.
Unlike UIQI, NRPQA does not need a reference image, as it
is aimed specifically at no-reference quality assessment of
JPEG compressed images considering blurring and blocking
as the most significant artifacts. As such, it is suitable for
DCT-based image evaluation. A higher NRPQA value indi-
cates a better image quality. CMR indicates the extent of
color in the resulting image relative to the reference image.
S indicates local structural fidelity measure based on struc-
tural similarity (SSIM),37 which contains three comparison
components: luminance, contrast, and structure. Compared
with SSIM, the luminance comparison component is miss-
ing in S since TMOs locally change original intensity.
Using all four of these numerical assessments, we com-
pared the proposed method with previous approaches,
such as iCAM06,3 a photographic tone reproduction based
on dodging and burning with a zone system33 (PTR), inte-
grated surround retinex model38 (ISRM), and retinex-based
adaptive filter method39 (RAFM).

Resulting images for these methods are shown in
Figs. 18–21. Evaluation results for the full set of images
are shown in Fig. 22. Note that according to UIQI results,
the proposed method trails PTR by a slight margin, but it
is competitive with other methods. NRPQA, which is a per-
ceptual assessment for JPEG compressed images, presents a
more objective evaluation than UIQI. Note that the proposed

Fig. 16 Relative unsharp gain Rcsf for adapting luminance.

Fig. 17 Coefficients of the basis sharpness mask, Hðu; vÞ.
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Fig. 18 Result images for img3.

Fig. 19 Result images for img4.

Fig. 20 Result images for img5.
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Fig. 21 Result images for img10.

Fig. 22 Evaluation results using three metrics: universal image quality index, no-reference perceptual
quality assessment, colorfulness metric ratio, and structural fidelity of tone mapped images.
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method has the best NRPQA scores among all methods
tested. The best score is assigned to the most robust method
about blurring and blocking artifacts. According to CMR
scores, the proposed method shows comparatively good per-
formance and no halo artifacts, as is apparent in images proc-
essed using ISRM. Finally, from S scores, it is confirmed that
the proposed method has structural fidelity equal to or higher
than those of the other methods.

In addition to objective evaluation, we conducted the psy-
chophysical experiment based on score rating. An original
image is first presented; then reconstructed images by each
method on a gray background are simultaneously shown on
a display device: LG 47LM6700. Participants in the experi-
ment are instructed to rate a score with 0-to-10 range for
each attribute: global tone, local contrast (halo), sharpness,
and color (naturalness). In the experiment, the total
number of collected scores is 7 ðimagesÞ × 6 ðmethodsÞ×
4 ðattributesÞ × 6 ðparticipantsÞ ¼ 1008. The average scores
and standard deviations are presented as color bars and
error bars in Fig. 23, respectively. The result shows that
the proposed method is highly rated on the psychophysical
experiment.

Our overall assessment, based on qualitative comparison
of the entire set of test images, confirms that the proposed
tone mapping method produces colorful, high-contrast
images with strongly enhanced details. In addition, accord-
ing to subjective comparison, the proposed method has
good preference scores for four-view, such as global tone,
local contrast, sharpness, and color. All resulting images by
the proposed method and the original images are shown in
Fig. 24.

5.2 Computation Time

We compute the computation time of the methods with the
test setup as shown in Fig. 25. Considering the novelty of
the proposed method that is inserted in JPEG baseline,
JPEG encoding and decoding are conducted after tone
mapping for the previous methods. For different resolutions
(853 × 480, 1280 × 720, 1920 × 1080), computation times
in MATLAB® are listed in Table 1 (CPU: Intel i7-2600K
3.40 GHz, RAM: 4 GB). In Table 1, the computation

Fig. 23 Subjective evaluation using preference assessment.

Fig. 24 Result images: input images (top) and out images (bottom) by
the proposed method.

Fig. 25 Test setup for checking runtime.
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time of our method is faster than those of iCAM06 and
RAFM, but similar to those of PTR and ISRM.
Compared with iCAM06 and RAFM adopting time-consum-
ing tasks for edge preserving and anti-halo, such as the bilat-
eral filter and anisotropic Gaussian functions, our method
improves the edge resolution and halo artifact while saving
a lot of computation time.

6 Conclusions
A novel approach to enhance images using tone mapping in
the compression domain was presented. In order to combine
tone mapping with JPEG baseline, we decomposed an image
using mask-based DCT band splitting and suggested the
luminance-adaptive tone mapping function, which was
based on the brightness and contrast adaptation of human
vision. For image application, we adopted the Stevens’
and Bartleson and Breneman’s experimental results and cor-
related analysis in order to mimic human vision properties. In
addition, the procedure involved sharpness enhancement
based on contrast sensitivity functions and color compensa-
tion. For the evaluation results, the performance of the pro-
posed method was compared with previous approaches
through several image assessment methods. It was discov-
ered that the proposed method outperformed previous
approaches in most cases. For optimal tone rendering, we
are certain that the proposed method can be useful in physi-
cal still cameras in order to compress the dynamic range in
JPEG baseline.
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