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1 Introduction
Detection and tracking of fast moving incoming targets are
important for a variety of military applications such as active
vehicle protection (AVP) systems and close-in weapon sys-
tems mounted on modern warships. AVP systems are
designed to protect armored military vehicles from incoming
threats with reactive weapons for counteractions, so they
generally consist of a radar system to track and activate
weapons control against incoming high velocity threats.1

These threats range from shoulder-launched rocket-propelled
grenades to more lethal kinetic energy penetrators. A radar is
an active sensor, i.e., it transmits a signal that the target
reflects and the reflected signal is collected by the radar’s
aperture. This active nature of the radar, while making it
an effective sensor, also leaves the vehicle vulnerable to
detection and in the worst case, the radar system is jammed
by enemy electronic countermeasure systems.2 An AVP sys-
tem with a passive sensor, which measures natural emissions
of targets, can be designed to avoid detection and jamming.
Considerable research and development have been done to
develop algorithms for tracking and position estimation
based on radar with laser illumination or infrared (IR) sen-
sors.3,4 However, standalone use of multiple IR sensors not
only proves to be useful in target tracking and estimation5–8

but also has an added benefit of stealth due to the passive
nature.

The bearing only estimation and tracking-based
approach involving two or more passive sensors employs
nonlinear filter-based approaches like the extended
Kalman filter (EKF)6,9,10 or the unscented Kalman filter.11

These methods use angle-only information measured by
multiple systems at the same time. These algorithms are

generally used for medium-range target tracking where
an accuracy of a few meters is considered sufficient.6,9–11

An approach for a multiple IR sensor-based system is pro-
posed in Ref. 12, where the estimates of the EKF are evalu-
ated by a fuzzy logic algorithm that decides the authority of
3-D angle intersection results. The scenario described in
Ref. 12 is for long range target tracking and the root
mean square error (RMSE) results are too large for AVP
system application. Likewise, Ref. 7 makes use of the
ratio of irradiance measured by two sensors to solve the
problem that arises when the flightpath of a target is nearly
collinear to the baseline. Although the aforementioned
technique improves the overall estimation performance
and provides a basic structure for position estimation
using measured irradiance, it does not fulfill the require-
ments of an active protection system for close-range threats.
This is because with a small baseline separation between
sensors, the measured irradiances of the two sensors will
be nearly the same, and consequently the ratio between
these irradiances will not provide sufficient information
to improve the estimation process. While effective with
large baseline and sensor-target distances, the technique
presented in Ref. 7 is not suitable for use in AVP systems
due to short-range high velocity incoming threats and lim-
itations on the short baseline distance between sensors.

Time-to-go (TTG) is defined as the time required for an
object to reach a certain location, e.g., the time a rocket takes
from any point of interest in space after being launched to
impact at the aimed location. The TTG measurement or esti-
mate can be augmented to angle measurements to improve
the overall target state estimation performance. There are two
major ways to estimate the TTG from image-based IR
sensors, i.e., image processing algorithms and the use of
measured target intensity. Estimation from imaging sensors
is generally based on optical flow13,14 or algorithms for*Address all correspondence to: Taek Lyul Song, E-mail: tsong@hanyang.ac.kr
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physical feature extraction15,16 from time-varying imagery
including IR imagery.17 The second approach uses the
rate of change of intensity to estimate the TTG for an incom-
ing target,2 also known as amplitude rate tracking. This tech-
nique requires basic image processing on an intensity map of
the surveillance region and conversion of each probable
object to a point source by obtaining the center of mass
of the object as well as the mean intensity. Two different
approaches to estimate TTG from amplitude rate tracking
are presented in Ref. 2, the first assumes prior knowledge
of accurate initial position and parameters related to the irra-
diance of target types, whereas the second approach consid-
ers either already known variables or optimized values of
these variables obtained via a trial and error approach.
These TTG estimation techniques have certain drawbacks;
computational complexity makes the approach involving
image processing unsuitable for real-time applications,
whereas lack of generality is the main problem in Ref. 2.

The first contribution is the calculation of the Cramér–
Rao lower bound (CRLB)18 on TTG estimate, which then
is used as a covariance for the TTG estimate when used
as an additional measurement to the EKF for target localiza-
tion. The second contribution includes the development of a
novel technique to extract the TTG estimate from the target
irradiance by using a fixed interval iteration scheme
(Newton–Raphson’s method). It is also shown that the result-
ing TTG estimate can be augmented to angle measurements
of the two sensors to improve the position and velocity esti-
mates of the incoming projectile using an EKF in real time.
In addition, performance comparison results of the proposed
technique with an AVP system based on radar only and
another one based on data fusion of radar and an IR sensor
are provided.

In the next section, position estimation using multiple
passive sensors is introduced along with target measurement
models, ranging systems, estimation of the TTG from suc-
cessive irradiance measurements, and calculation of the
CRLB for TTG; then automatic triangulation is explained
in Sec. 3. Section 4 describes the TTG estimation and the
augmented measurement scenario. The effectiveness of the
proposed algorithm for both TTG estimation and reduced
RMSE in position is demonstrated along with the perfor-
mance comparison with a radar-based AVP system via a sim-
ulation study in Sec. 5, which is followed by concluding
remarks in Sec. 6.

2 Three-Dimensional Position Estimation with
Multiple Passive Sensors

This paper considers multiple IR sensors installed on the
same platform arranged in pairs such that each pair of sen-
sors has the same spectral characteristics, shares the same
field of view and has perfect alignment. Each pair of sensors
will register the same target in its field of view either with the
platform moving or stationary. Another classical assumption
that we make is the synchronization of each sensor pair. The
targets for an AVP system range from subsonic small caliber
(105 mm) rocket-propelled grenades with high-explosive
anti-tank warheads to supersonic kinetic energy projectiles
with larger calibers. The proposed IR sensor resolution, dis-
cussed in a later section, aims at the detection of a 100 mm
caliber target at a range of 1000 m. The state of the platform
is assumed to be known with a certain accuracy and the

baseline distance between each sensor pair is fixed. The mea-
surements obtained from an IR sensor are azimuth and eleva-
tion angles of a target along with the signal irradiance at a
known discrete time indexed by k. The radar measurement on
the other hand includes the target range information along
with azimuth and elevation angles.

A nearly constant velocity model is considered for target
dynamics and a nonlinear measurement model is employed
for target angles for triangulation. The origin of the tracker
coordinate system is set as the position of sensor S1, as
shown in Fig. 1. The distance between the two sensors is
the baseline (b), and the angles (ϵ1, ϵ2) and (η1, η2) are
the elevation and azimuth angles as observed by S1 and
S2, respectively.

2.1 Target Measurement Models

Measurements of the target are obtained in sequence at each
sensor. The measurements consist of angle information, zθsk
(azimuth and elevation), along with irradiance, zwsk , from both
sensors. Irradiance is the ratio of the intensity of the radiation
emitted by the target to the square of the distance separating
the target from the sensor system with losses due to atmos-
pheric absorption and scattering accounted for.2 The meas-
urement model for azimuth and elevation angles with the
relative Cartesian state vector Xk can be expressed as

zθsk ¼ hθkðXkÞ þ wθ
k: (1)

The subscript s denotes the sensor number generating
measurement, where wθ

k is the zero-mean, white Gaussian
measurement noise with covariance Rθ, which is expressed
by

Rθ ≔ diagðσ2η1 ; σ2ε1 ; σ2η2 ; σ2ε2Þ (2)

and

hθkðXkÞ ¼ ½ η1k ε1k η2k ε2k � 0; (3)

where the bearings and elevation angles are defined as

Fig. 1 Tracker coordinate system, azimuth angle. η ∈ ½0;2π� and
elevation ϵ ∈ ½−π∕2; π∕2�.
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ηsk ¼ tan−1
ytk − ysk
xtk − xsk

;

εsk ¼ tan−1
ztk − zsk

ððxtk − xskÞ2 þ ðytk − yskÞ2Þ1∕2
: (4)

The following relationship was used to relate irradiance,
intensity, and the distance of sensor S1 from the target2

W ¼ Io
r2

e−αr; (5)

where W, the irradiance, is calculated when the target emits
radiation of intensity Io at distance r. The emitted radiation
of intensity, Io, mentioned here or in any of the following
sections refers to the intensity values associated with the
point target on a single frame of the IR image. The exponen-
tial term can be considered a sufficient approximation for
atmospheric transmittance,19 where α ðm−1Þ is the extinction
coefficient and can be calculated as

α ¼ Δb
1000

lnð2Þ; (6)

and the maximum value of Δb does not exceed 0.3
ðΔb ≤ 0.3Þ. The measurement thus obtained can be written
as

zwsk ¼
Io
r2sk

e−αrk þ nk; (7)

with nk describing the background noise irradiance as in
Ref. 7. This noise term appears because the target is viewed
against a background which also emits IR energy, e.g.,
clouds or trees. The denominator can further be expressed
such that Eq. (7) becomes

zwsk ¼
Io

v2kðtf − kTÞ2 e
−αvkðtf−kTÞ þ nk; (8)

where vk represents the target velocity at discrete time k, tf is
the final time, and T is the sensor sampling time.

Instead of using the measured irradiance zwsk directly, the
measured irradiance is used to calculate the TTG, a pro-
cedure that forms the basis of this research, and will be
explained in Sec. 2.3.

2.2 Ranging Systems

A key function of combining angle-only information from
two passive sensors is to be able to observe the range of
the target. The location of a point is determined by measuring
the angles to it from two points separated by a baseline, as
shown in Fig. 1. Since this paper deals with the ranging
issue, the problem is slightly modified to emphasize the tar-
get’s position or the distance from the target to the expected
point of impact. The origin of the tracking coordinate system
in our case is located at the position of sensor 1, as shown in
Fig. 1. The ground range a can be expressed as

a ¼ b sin η2
sinðη2 − η1Þ

; (9)

this then can be used to calculate the actual range of the
target from the origin as

d1 ¼
a

cosðε1Þ
: (10)

There are different ways to address this geometric prob-
lem; using Eqs. (9) and (10) is one of them.7 The position of
the target calculated from the baseline length and angle infor-
mation is used in this paper to initialize the triangulation
process. In order to estimate the target position, angles from
both sensors separated by a fixed baseline are augmented
together and the estimation process is accomplished using
the EKF.7,20,21

Although the process of initialization using Eqs. (9) and
(10) seems straightforward and very accurate due to noisy
angle measurements from the two passive sensors in
Fig. 1 and prediction errors, the sensor-to-target vectors
may not intersect at the target position.2 Using the known
noise variance in angle measurement, a region of interest
is defined (indicated by the shaded region in Fig. 2).
Based on this region, the statistical parameters of
Gaussian noise affecting the true target range are defined.

The parameters ηþ, η−, εþ, and ε− are the three sigma
bounds on the measurement noise for the azimuth and eleva-
tion angles, as in Eq. (2). The parameter δ varies in each scan,
which implies the variance of the noise being added in the
target range will change at every scan. The variance of this
statistical parameter for range is defined as

σ2Rk
¼
�
δk
3

�
2

: (11)

Bearing in mind that the cross-range noise variance is
considerably smaller compared to the down-range noise vari-
ance, the latter will be the dominating source of RMSE in
target range estimation.

2.3 Time-To-Go Estimation and Cramér–Rao Lower
Bound

To exploit the full potential of the passive IR sensors, the
measured irradiance from these sensors is used to estimate
the TTG. An initial guessed value of the parameter is needed
for initializing the recursive estimation algorithm based on
the Newton–Raphson method for parameter estimation.
The irradiance measurement in Eq. (8) is obtained from
two consecutive scans and then the ratio between these

Fig. 2 Geometric relationship between two passive sensors and stat-
istical parameters for Gaussian noise affecting the target range.
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measurements is used to get a sufficiently close value for ini-
tialization of the estimator for the TTG. The measurement
Eq. (8) for k ¼ 0;1 can be rewritten as

zws0 ¼
Ave

−αvktf

t2f
þ n0; (12)

zws1 ¼
Ave

−αvkðtf−TÞ

ðtf − TÞ2 þ n1; (13)

where the ratio Io∕v2k is defined as Av. An initialization point
close enough to the actual value is required so that the
Newton–Raphson algorithm converges within a limited num-
ber of iterations. This is due to the fact that the initial value of
the parameter needs to be close to the true value for conver-
gence.22 After analysis and carefully carried out simulations
for convergence, it was concluded that in the calculation of
the inital value for the TTG, the irradiance measurement
noise can be ignored for fast convergence by the Newton–
Raphson algorithm. Thus, the ratio of the irradiances
obtained from the same sensor at different scans, after ignor-
ing the measurement noise irradiance can be expressed as

γ ¼ zws1
zws0

¼ t2fe
αvkT

ðtf − TÞ2 : (14)

It was also concluded that for the system range variation
in the engagement environment under consideration, i.e., less
than 1000 m, the effects of signal (irradiance) attenuation due
to atmosphere are negligible and can be ignored. This
assumption is made for rest of the paper, i.e., the term,
eαvkT will be approximated by one.8 So with this assumption,
Eq. (14) becomes

tf ¼
ffiffiffi
γ

p
Tffiffiffi

γ
p − 1

: (15)

After calculating the value of tf, Eq. (15) is used to obtain
the initial value for the other unknown parameter, Av, such
that

Av ¼ zws0

� ffiffiffi
γ

p
Tffiffiffi

γ
p − 1

�
2

: (16)

Equations (15) and (16) are then used to initialize the esti-
mator for TTG, thus providing us with near optimal results.
Next, the CRLB on the TTG estimation error is calculated.
The CRLB is a lower bound on the variance of any unbiased
estimate. The CRLB is generally used to determine perfor-
mance of an estimator as it is referred to as the best achiev-
able performance. The objectives of deriving the CRLB are
threefold. The first one is to check if the best achievable TTG
estimate is useful in enhancing the system observability, i.e.,
improving the target state estimates. It is shown in later sec-
tions that the TTG estimate does improve the overall perfor-
mance when used as an augmented measurement to the angle
information of the two IR sensors. The second one is to mea-
sure the performance of the TTG estimator and the last one is
to use the lower bound as the variance of the TTG informa-
tion used as an augmented measurement of the EKF for tar-
get state estimation for target ranging.

Suppose an unbiased estimate of the parameter set θ com-
posed of tf and the parameter Av can be generated from the
simplified version of Eq. (8). Then the estimation error vari-
ance will be bounded by the inverse of the Fisher information
matrix, i.e., E½ðθ̂ − θÞ2� ≥ I−1ðθÞ. The information matrix
can be computed by taking the expected value of the
Hessian of the log-likelihood function as follows:

IðθÞ ¼ Ef½∇θ log pðzwsk jθÞ�T ½∇θ log pðzwsk jθÞ�g: (17)

The likelihood function that will be used to calculate the
information matrix can be written as

pðzwsk jθÞ ¼ N ðzwsk ; hwk ; σ2wÞ; (18)

and with measurement vector Zw
s , the likelihood function

becomes

pðZw
s jθÞ ¼

Yn−1
k¼0

N ðzwsk ; hwk ; σ2wÞ;

¼ 1

ð2πÞn∕2σnw
e
− 1

2σ2w

P
n−1
k¼0

ðzwsk−hwk Þ2 : (19)

By the assumption of negligible atmospheric attenuation,
the measurement function becomes

hwk ¼ Io
v2

1

ðtf − kTÞ2 ¼
Av

ðtf − kTÞ2 ; (20)

where n is the sample size, i.e., tf ¼ nT and
k ¼ 0; 1; 2; : : : ; n − 1. The gradient can be written as

∇θ ¼
�
∂
∂θ1

;
∂
∂θ2

�
; θ ¼ ½tf; Av�T;

where the parameter vector θ consists of two elements tf and
Av. Taking the natural log of the likelihood function Eq. (19)
results in

P ¼ log pðZw
s jθÞ;

¼ − logðð2πÞn∕2σnwÞ −
1

2σ2w

Xn−1
k¼0

ðzwsk − hwk Þ2; (21)

and differentiating Eq. (21) with respect to tf yields

∂P
∂tf

¼ 1

2σ2w

Xn−1
k¼0

2ðzwsk − hwk Þ
�
∂hwk
∂tf

�
; (22)

after differentiating the term hwk , given by Eq. (20), then
Eq. (22) becomes

∂P
∂tf

¼ −2Av

σ2w

Xn−1
k¼0

ðzwsk − hwk Þ
ðtf − kTÞ3 ; (23)

similarly differentiating Eq. (21) with respect to Av yields
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∂P
∂Av

¼ 1

σ2w

Xn−1
k¼0

ðzwsk − hwk Þ
ðtf − kTÞ2 : (24)

By combining Eqs. (23) and (24), the gradient of the log-
likelihood function with respect to the vector θ can now be
written as

∇θ log pðZw
s jθÞ ¼

2
4 −2Av

σ2w

P
n−1
k¼0

ðzwsk−hwk Þ
ðtf−kTÞ3

1
σ2w

P
n−1
k¼0

ðzwsk−hwk Þ
ðtf−kTÞ2

3
5 0

: (25)

From Eqs. (17) and (25), a 2 × 2 matrix is obtained such
that the first and second diagonal entries of the inverse matrix
are the CRLBs for TTG and Av. Then the information matrix
can be written as

IðθÞ ¼
�
EfD11g EfD12g
EfD21g EfD22g

�
; (26)

where each element of this matrix is obtained after manipu-
lating and taking the expected value of Eq. (17). The first
diagonal entry related to the TTG can be expressed as

EfD11g ¼ 4A2
v

σ2w

Xn−1
k¼0

1

ðtf − kTÞ6 ; (27)

while the two nondiagonal entries take the same value and
can be written as

EfD12g ¼ EfD21g ¼ −2Av

σ2w

Xn−1
k¼0

1

ðtf − kTÞ5 ; (28)

and the second diagonal entry related to Av can be written as

EfD22g ¼ 1

σ2w

Xn−1
k¼0

1

ðtf − kTÞ4 : (29)

Finally, the CRLB is calculated using Eqs. (27)–(29) in
Eq. (26) and then inverting the Fisher information matrix.
Then

CRLB ¼ ð½P−1
0j0 þ IðθÞ�Þ−1; (30)

where the first and second diagonal entries of Eq. (30) re-
present the CRLB of the desired parameters and P0j0 is
the initial covariance matrix.

The CRLB computed here is used to determine whether
the TTG estimate is useful in reducing the position RMSE at
a particular signal-to-noise ratio (SNR) of the target irradi-
ance and background noise; the second purpose is to use the
CRLB as the measurement noise of the TTG estimate when
used as an augmented measurement to the angle measure-
ments of the EKF for target localization with the IR sensors.

3 Ranging Based on Automatic Triangulation
Due to the stochastic nature of the measurements from the
two sensors, the EKF is used for target state estimation.18

The target’s trajectory state propagates in the discrete
domain by

Xk ¼ FkXk−1 þ vk; (31)

where Xk is the target state vector and vk is zero-mean white
Gaussian noise with known covariance matrix Q. The target
state vector is defined by

X ¼ ½ x y z ˙x ˙y ˙z � 0: (32)

The state transition matrix F in Eq. (31) is defined as

F ¼
�

I3 TI3
O3 I3

�
; I3 ¼

 
1 0 0

0 1 0

0 0 1

!
; (33)

where O3 is a 3 × 3 zero matrix. The covariance matrix Q
defining process noise vk can be expressed as

Q ¼ q:

 
T4

4
I3

T3

2
I3

T3

2
I3 T2I3

!
; (34)

where q is the process noise variance and I3 is the same as
defined in Eq. (31). The measurement model is completely
defined by Eqs. (1)–(4). The EKF update and prediction
equations as given in the literature2,18 can be expressed as

X̂k∕k−1 ¼ FX̂k−1∕k−1; (35)

P̂k∕k−1 ¼ FP̂k−1∕k−1FT þQ; (36)

whereas the estimation part can be written as

Sk ¼ Hθ
kP̂k∕k−1ðHθ

kÞT þ Rθ; (37)

Kk ¼ P̂k∕k−1ðHθ
kÞTS−1k ; (38)

X̂k∕k ¼ X̂k∕k−1 þKk½zθð1;2Þk − hθkðX̂k∕k−1Þ�; (39)

P̂k∕k ¼ ðI −KkHθ
kÞP̂k∕k−1; (40)

where the nonlinear function hθð1;2ÞðX̂k∕k−1Þ is a 4 × 1 vector
as defined by Eq. (3) and Hθ

k is the Jacobian matrix defined
as

Hθ
k ¼

0
BBBBB@

∂η1k
∂x

∂η1k
∂y 0 0 0 0

∂ε1k
∂x

∂ε1k
∂y

∂ε1k
∂z 0 0 0

∂η2k
∂x

∂η2k
∂y 0 0 0 0

∂ε2k
∂x

∂ε2k
∂y

∂ε2k
∂z 0 0 0

1
CCCCCA: (41)

Each element in Eq. (41) can be expressed using partial
derivatives of Eq. (4) in the following generalized form (for
both sensors), where the time index has been removed for
simplicity and the superscript denotes the sensor number
generating the measurement

∂ηs
∂x

¼ ys − yt

ðxt − xsÞ2 þ ðyt − ysÞ2 ;
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∂ηs
∂y

¼ xt − xs

ðxt − xsÞ2 þ ðyt − ysÞ2 ;

∂εs
∂x

¼ −ðxt − xsÞðzt − zsÞ
D2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxt − xsÞ2 þ ðyt − ysÞ2

p ;

∂εs
∂y

¼ −ðyt − ysÞðzt − zsÞ
D2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxt − xsÞ2 þ ðyt − ysÞ2

p ;

∂εs
∂z

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxt − xsÞ2 þ ðyt − ysÞ2

p
D2

;

where D is defined as

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðxt − xsÞ2 þ ðyt − ysÞ2 þ ðzt − zsÞ2�

q
:

The Cartesian coordinates are not known and are written
in a simplified manner here; the actual elements of the
Jacobian matrix are calculated using the state vector obtained
after prediction. The filter covariance matrix is initialized
based on Eq. (11). The quality of the estimate depends on
the sampling time T along with the assumed measurement
process noise covariance matrix Rθ and process noise
variance q.

4 Ranging Based on Triangulation and Time-To-Go
Estimation

The main emphasis of this work is to show how to estimate
TTG in an iterative manner based on intensity information
from a passive IR sensor at short ranges with a high degree
of accuracy. The case where estimation is performed using
triangulation with an EKF results in a performance that needs
improvement, both with respect to response time and the
RMSE for AVP. With the high speed projectiles and shorter
ranges under consideration, time is of the essence. Not only
does the RMSE in position need to be decreased, but it has to
be done quickly.

Awell-known fixed interval iteration algorithm, Newton–
Raphson, is used for estimating the TTG. The initialization
process for the case of triangulation at greater ranges causes
the EKF to diverge, which is because the shaded area rep-
resenting possible target location as indicated in Fig. 2 is
very large, thus it produces unacceptable values for initial-
ization of the EKF. With the noise statistics for angle mea-
surements being considered in this research, filter divergence
occurs at target ranges greater than 600 m. This discussion is
based on a baseline separation of 3 m between the two sen-
sors, the resolution of each sensor is 1280 × 1024 pixels and
the target velocity is 1000 m∕s. The irradiance measure-
ments on the other hand can still be used to estimate the
TTG beyond this range. The triangulation process is not
started until the range of the projectile is less than 600 m
with the uncertainty in range accounted for. If the projectile
is fired from a range greater than this bound then all the mea-
surements from the detection up to this point in time are used
to estimate the TTG. During this period, the sampling time
for the irradiance measurement is kept intentionally large.
This strategy is adopted so that the initialization part, i.e.,
Eq. (15), gives a close enough initial value of tf because
of the higher levels of noise at these ranges. Violating this

strategy results in an increased number of the Newton–
Raphson iterations, thus exceeding the predefined limit.
Otherwise the estimator fails to converge. As the target
moves closer, more samples are drawn out and used to esti-
mate the TTG because of the improved target irradiance-to-
background noise ratio. Specifically, when the range is less
than 500 m, the TTG is estimated based on target irradiance
measured over every 100 m. The EKF with the augmented
measurement vector starts working as soon as the first TTG
estimate is available.

The measurement augmentation takes place only after a
TTG estimate is available. Since target tracking algorithms
also need some time to confirm a track, the fast sampling rate
in this case provides sufficient measurements, making the
track confirmation process quicker. The algorithm here
switches between two filters, i.e., an EKF for position esti-
mation using Eqs. (9) and (10) for initialization and an EKF
with an extended measurement vector, the additional meas-
urement being the estimated TTG. The complete flow of this
algorithm is given in Fig. 3.

4.1 Time-To-Go Estimation

Using Eq. (20) as the measurement generating function and
differentiating with respect to θ, which is a column vector

Fig. 3 Target state estimation with the extended measurement vec-
tor: block diagram of the complete algorithm.
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containing the parameters to be estimated as defined earlier,
one has

∂hwk
∂θN

¼
�

−2Av

ðtf − kTÞ3 ;
1

ðtf − kTÞ2
�
: (42)

Table 1 presents a pseudocode of the Newton–Raphson
method for TTG estimation. The algorithm is initialized
using Eqs. (15) and (16). After careful analysis and simula-
tion, the number of iterations was limited to 10, since the
algorithm converges in less than 5 iterations.

4.2 Filter Structure with Extended Measurement
Vector

The EKF is employed again, with the state vector consisting
of position and velocity as in the previous case but with an
extended measurement vector Zsk and hence an extended
measurement matrix Hk. The new measurement vector,
which consists of five elements, i.e., target azimuth and
elevation from two sensors along with TTG ðτkÞ, can be
expressed as

Zsk ¼ ½ η1k ε1k η2k ε2k �T: (43)

The measurement matrix will have an additional row of
partial derivatives of ðτkÞ with respect to the state vector,
which can be written as

Hτ
k ¼

�
∂τk
∂x

∂τk
∂y

∂τk
∂z

∂τk
∂˙x

∂τk
∂˙y

∂τk
∂˙z

�
; (44)

where

τ ¼ −
R
˙R

¼ −
x2 þ y2 þ z2

x˙xþ y˙yþ z˙z
; (45)

with R being the range and _R the range rate. These are cal-
culated based on the target state prediction and not based on
the actual position. The new measurement matrix is
obtained by combining Eq. (44) with Eq. (41) and can be
written as

Hk ¼
�
Hθ

k
Hτ

k

�
: (46)

Similarly, the corresponding covariance matrix needs to
be extended with the last appended diagonal entry being
the variance for TTG. The TTG estimate obtained from
Table 1 is used as an additional input to EKF and is consid-
ered to be noisy, where the additive noise follows a normal
distribution with zero mean and its variance equals the value
obtained from Eq. (27). The variance changes for TTG at
every point in time when the extended measurement vector
is used, because, with the target getting closer and closer to
the sensors, the irradiance measurement becomes less noisy.

Except for Eq. (46) and the extended measurement noise
matrix, the rest of the structure is the same as the classical
EKF defined by Eqs. (35)–(40). The estimation process con-
tinues until it reaches a minimum threshold distance for the
target to be engaged.

5 Simulation Study
The estimation performance for both TTG and target locali-
zation is provided in terms of RMSE. The simulation sce-
nario is depicted in Fig. 1. Two passive IR sensors are
placed along the positive x-axis with the first sensor posi-
tioned at [0, 0, 2 m] and the second one at [b, 0, 2 m].
The baseline distance b is expressed in meters. The target
is moving almost parallel to the y-axis following a uniform
motion model with velocity v ¼ 1000 m∕s. The initial posi-
tion of the target is determined by the vector [1.5 m,
1000 m,2 m], with the impact point centered between the
two sensors.

There are two criteria for optimal baseline length selec-
tion. The first one is the variance of target range estimate
and the second one is the availability of space on the vehicle
for installation of IR sensors. The first criterion affects the
overall estimation performance, as a larger variance means
a larger RMSE in position, which cannot be used for an
AVP system. The second criterion, i.e., availability of
space on the vehicle limits the baseline length physically
to a maximum of b ¼ 3 m. As illustrated in Fig. 4, the vari-
ance of the range with a baseline length of b ¼ 1 m calcu-
lated based on Eq. (11) is substantially large and the filter
fails to converge when estimating the target position within
the limited time available. With these results, we chose the
maximum allowable baseline distance b ¼ 3 m.

The sampling time for the triangulation scheme was set to
0.01 s, whereas in the case of TTG estimation it was varied
from 0.1 s before the first target state estimation to 0.01 s
thereafter. The sensors considered for this scenario have a

Table 1 Newton-Raphson for time-to-go estimation.

Input: Irradiance measurement zw
sk

if range less than bound then

Gather minimum required input samples.

if required samples criteria are met

calculate θ for start point using (15) and (16)

for number of iterations do

Calculate:

M ¼Pn−1
k¼0 ð∂hw

k ∕∂θN ÞT σ−2w ð∂hw
k ∕∂θN Þ

N ¼Pn−1
k¼0 ð

∂hw
k

∂θN
ÞT σ−2w ðzw

sk − hw
k Þ

Update:

θ̂lþ1
n ¼ θ̂ln þM−1N

end for

Output:Estimated parameters, t f and A,

end if

else

Gather minimum required input samples at low sampling rate

end if
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resolution of 1280 × 1024 pixels, with an aspect ratio of 5:4
and a field of view (FOV) of 7.3 deg along azimuth, and
5.9 deg elevation. However, this requirement can be relaxed
based on the target detection range or by narrowing the FOV.
With the current high-resolution sensors,23,24 it is reasonable
to use sensors with the resolution and sampling time consid-
ered for this simulation scenario. The maximum angle
deviation for each sensor is kept at one pixel, which corre-
sponds to ση ¼ 5.7 mrad and σε ¼ 5.7 mrad.

The simulation in case of the AVP system based on IR
sensors only was conducted for different values of SNR
between the target irradiance given by Eq. (5) and back-
ground noise, nk. While the CRLB suggested an SNR of
up to 15 dB will result in improved position estimation
after measurement augmentation, filter divergence limits
the SNR to 25 dB. This was due to the unsuitable initial
points obtained from Eqs. (15) to (16). The CRLBs for dif-
ferent values of SNR at TTG from 1 − 0.1 s are given by
Figs. 5 and 6.

We also compare the proposed approach for the AVP sys-
tem with already existing approaches based on radar and
radar-IR fusion. The sensor location, in case of the AVP sys-
tem based on radar, is set to be at [0, 0, 2 m]. The uncertainty
levels in the target measurements of the radar are defined by
the diagonal elements of the measurement covariance matrix,
RR, and are quantified by standard deviations, σr ¼ 1 m,

σε ¼ 26.4 mrad, and ση ¼ 26.4 mrad. The target has the
same velocity while the initial position vector is determined
by [0, 1000 m,2 m]. The sampling time is equal to that of the
IR sensors, i.e, T ¼ 0.01 s. A Kalman filter is used to esti-
mate the position and velocity of the target by utilizing the
unbiased converted measurements in Cartesian coordinates
as described in Refs. 2 and 25. In the next case where the
radar measurements and the measurements of an IR sensor
are fused, the radar location is not changed, but the IR sensor
location is given by the vector [0.5 m, 0, 2 m]. The target
position is also kept the same as in the case of the radar
based system. The IR sensor used here shares the same spec-
ifications and statistical parameters as in the case of an IR
only AVP system. The predicted target impact point in
this case is the radar position. It is also assumed that both
the sensor systems are perfectly synchronized. The
Kalman filter is used to update the state estimate with the
converted radar measurements whereas an EKF is used to
update the IR information by utilizing the updated
Kalman filter state estimates as the predicted state estimates.

In order to demonstrate performance improvement in the
ranging system and the efficiency of TTG estimation, Monte
Carlo simulation results are presented. Each simulation
experiment of triangulation with TTG, radar only and
radar-IR fusion consists of 1000 runs.

The following figures are presented to illustrate and com-
pare the performance of the algorithms. Figure 7(a) shows
the estimated TTG based on the Newton–Raphson algorithm
where each estimate is obtained as a result of 10 iterations.
The TTG was estimated in two parts as illustrated; the first
estimate was made using measurements from 1000 to 500 m
with a sampling rate of 0.1 s, the following batch was esti-
mated after every 10 measurements with a sampling rate of
0.01 s. Figure 7(b) illustrates the quick convergence of the
Newton–Raphson algorithm at 100 m for different values of
SNR. The estimator here yields near optimal results as com-
pared to the CRLB.

Since the TTG estimate is very accurate, it is bound to
improve performance of the EKF. The RMSEs in position
and velocity estimates for the systems in comparison are
depicted in Figs. 8 and 9, respectively.

The system based on IR sensors only gives a better per-
formance as compared to the system based on the radar and
radar-IR fusion approach because of the more accurate angle
measurements generated by the IR sensors. Even though the
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radar-IR fusion approach seems to give the best performance
regarding position estimation up to TTG ¼ 0.4 s, the passive
sensor systems show a better performance afterward. Both
systems based on radar only and radar-IR fusion show the
position estimates with an RMSE bigger than 1.5 m at the
target range of 100 m, which is not accurate enough to
engage the target with the counteracting gun system. The
bad performance of radar-based systems is due to the domi-
nating factor of the radar range covariance, σr, and inherent
high measurement noise associated with the angle measure-
ments. The radar-IR approach gives an improved perfor-
mance initially but fails to compete with the passive
systems after TTG ¼ 0.25 s. A similar trend can also be
seen in the RMSE in the velocity estimatation. Therefore,
the performance of passive systems with or without
TTG augmentation is superior to that of the radar systems.
In case of the two IR sensors based approaches, the

improvement is clear when the RMSE obtained by the
two techniques is compared. The RMSE in the position
for triangulation at 100 m is approximately equal to
0.25 m, whereas with the TTG information augmentation,
this falls to 0.03 m, which accounts for approximately a
10-fold improvement in results. Reactive weapons to destroy
incoming threats are usually deployed within 30 to 50 m
from the AVP system, thus a decrease in the down-range
RMSE is expected.

To simulate one scan time of 10 ms, the average CPU
execution time of the proposed algorithm is 1.7 ms, whereas
1.85 ms is required for the case of radar-IR fusion, which is
slightly longer than the proposed algorithm. In the radar only
case, the execution time is 0.9 ms. The execution time is cal-
culated for the MATLAB 8.3 platform (3.1 GHz, Intel, Core
i5 CPU).
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6 Conclusions
This paper considers the problem of an AVP system based on
two passive IR sensors separated by a short baseline
distance.

Based on the principle of triangulation using a classical
EKF, a new algorithm is devised. The proposed method
makes use of a fixed-interval iterative method for estimating
TTG and ultimately uses it as an additional TTG measure-
ment for the EKF to improve range estimation. The result is a
simple, efficient algorithm with superior estimation perfor-
mance to the conventional triangulation approach and
approaches based on radar or radar-IR fusion. This also
results in improved interception at extended range due to
a reduction in position RMSE with the capability of the sys-
tem to prioritize closely fired projectiles with different veloc-
ities. Furthermore, the system can serve as a backup in case
the systems using radar are jammed or damaged. The sim-
ulations show that the accuracy, quick convergence, and sim-
plicity of the proposed algorithm make it suitable for real
tactical situations.

The performance of an active protection system based on
multiple, closely spaced passive IR sensors can be signifi-
cantly enhanced with the proposed TTG estimation algo-
rithm against short-range high velocity incoming threats.
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