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1 Introduction
New types of aspheric surfaces and their mathematical
expressions have been proposed in optical design.1–5 In par-
ticular, the effectiveness of odd-order surfaces, which are
expressed with terms including an odd-integer power of the
radius, has begun to be recognized via the designs of view-
finders,6 microscopes,7 camera lenses,8 projection display
optics,9 EUV optical systems,10–12 and so on. Since aberra-
tion characteristics of odd-order surfaces differ largely from
those of conventional aspheric surfaces, it is meaningful and
important to analyze the features of odd-order surfaces
mathematically.

Shibuya et al.11 pointed out that not only surface shape but
also surface slope should be fully approximated to express an
optical surface because the refraction of light is determined
by the tangent of the surface. From this viewpoint, by con-
sidering Taylor expansion, they proved that no odd-order
surfaces can be fully represented by even-order terms and
thus deduced that the odd-order surfaces have different aber-
ration characteristics from conventional even-order surfaces.
They concluded that this peculiarity of odd-order surfaces
leads to effectiveness in optical design.11,12 However, they
ignored the possibility that a finite number of Zernike poly-
nomials fully approximates odd-order surface shapes and
slopes.

To analyze aberration characteristics of aspheric surfaces
mathematically, Zernike expansion is the most common tool
because each Zernike polynomial corresponds to a specific
geometrical aberration. Zernike polynomials were originally
introduced by Zernike13,14 as the eigenfunctions of a rotation-
ally symmetrical and self-adjoint differential equation on the
unit disk. The orthogonality and the L2-completeness of
Zernike polynomials are direct consequences of this defini-
tion.15 Another definition was given by Bhatia and Wolf13,16

from the viewpoint of symmetry. In this literature, conver-
gence of Zernike expansion is not explicitly discussed, but

is regarded as an implicit condition. A mathematician,
Szegö,17 presented an explicit and strong solution for the
convergence problem. That is, uniform convergence is ful-
filled for a wide class of orthogonal expansion.

Braat and Janssen18 gave an example of explicit Zernike
expansion coefficients by factorial functions or the gamma
function. For derivatives of Zernike polynomials, many
researchers such as Nijboer19 obtained the recurring formu-
lae of derivatives to convert wavefront aberrations into
geometrical aberrations. This derivation was based on the
three term equalities of Gauss’s hypergeometric function.
Janssen20 discussed the derivative formulae in connection
with a Laplace operator. He presented the effectiveness of
his method in the calculation and measurement of geomet-
rical aberrations. He also mentioned that this method is
applied to solve the Neumann problem of differential equa-
tions. By studying the algebraic structure of differential oper-
ators on the complex unit disk, Wünsche21 generalized these
discussions and derived a generalized form of orthogonal
polynomials in the analogy of quantum theory.

As mentioned above, expansion by orthogonal polyno-
mials and its derivatives have been deeply investigated.
However, as far as we know, a concrete formulation for
odd-order surfaces cannot be found. In particular, both the
convergence of Zernike expansion and the convergence of
termwise differentiation of Zernike expansion are not dis-
cussed in any literature at all.

The goal of this study is to prove that both shapes
and slopes of odd-order surfaces are fairly approximated by
finite numbers of Zernike polynomials. To show this, we
address the convergence of Zernike expansion and their
derivatives specifically for odd-order surfaces. Section 2
defines Zernike polynomials and describes their derivation
formulae. We present the expansion coefficients of odd-
order surfaces and an estimation of the decreasing speed
of Zernike coefficients mainly for odd-order surfaces. In
Sec. 3, we originally give a proof of the convergence for
Zernike expansion in surface shapes and slopes for odd-
order surfaces using the result of Sec. 2. In Sec. 4, we practically*Address all correspondence to: Takao Tanabe, E-mail: t.tanabe@topcon.co.jp
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show the effectiveness of the expansion formula by its
numerical estimation. By applying the result to lens design
of a Schmidt surface, we demonstrate that both the corrector
shape and slope are fully approximated by a finite number of
Zernike polynomials.

In addition, the resultant approximation of an odd-order
surface is not an example of Taylor expansion, which will be
briefly explained in Sec. 2.1. Thus, the result of our method
does not contradict the consequences of Ref. 11, which
describes the impossibility of Taylor expansion of odd-
order surfaces.

To express aspherical surfaces, expansion into power
series, Zernike expansion, Qcon polynomials, and so on have
been used. The method described in this paper allows us to
analyze odd-order surfaces by Zernike polynomials and
power series. Expressing odd-order surfaces by Qcon surfa-
ces is our future issue.

2 Definition of Zernike Polynomials and Their Basic
Properties

2.1 Definition of Rotationally Symmetrical Zernike
Polynomials

Rotationally symmetrical Zernike polynomials Z0
2nðrÞ are

given as13

EQ-TARGET;temp:intralink-;e001;63;477Z0
2nðrÞ ¼ QnðtÞ ¼

ð−1Þn
n!

dn

dtn
tnð1 − tÞn; (1)

where t ¼ r2, r is the normalized radial coordinate, and n is
a non-negative integer.

This definition of the right-side differential is called the
Rodrigues formulae.15 Explicitly, one obtains the first six
polynomials as

EQ-TARGET;temp:intralink-;e002;63;380

Q0ðtÞ ¼ 1;

Q1ðtÞ ¼ 2t − 1;

Q2ðtÞ ¼ 6t2 − 6tþ 1;

Q3ðtÞ ¼ 20t3 − 30t2 þ 12t − 1;

Q4ðtÞ ¼ 70t4 − 140t3 þ 90t2 − 20tþ 1;

Q5ðtÞ ¼ 252t5 − 630t4 þ 560t3 − 210t2 þ 30t − 1: (2)

Their orthogonality is expressed as

EQ-TARGET;temp:intralink-;e003;63;250

Z1

0

QnðtÞQmðtÞdt ¼
1

2nþ 1
δm;n; (3)

where δm;n is Kronecker’s delta.
Since fQnðtÞg is a complete orthogonal set on the unit

interval of [0, 1], any L2 function fðtÞ is expanded by
fQnðtÞg. Namely,

EQ-TARGET;temp:intralink-;e004;63;153fðtÞ ¼ a0Q0ðtÞ þ a1Q1ðtÞ þ a2Q2ðtÞþ · · · ; (4)

where the coefficients are

EQ-TARGET;temp:intralink-;e005;326;752an ¼ ð2nþ 1Þ
Z1

0

fðtÞQnðtÞdt: (5)

The expansion by orthogonal polynomials such as
Eq. (4) is also expressed as a polynomial fðtÞ ¼ c0 þ c1tþ
c2t2þ · · · cNtN by taking the terms up to N and rearranging
the order of terms by Eq. (2). Although this formal expansion
does not give an example of Taylor expansion, this is actually
a fair approximation of the original function fðtÞ. (If the
expression fðtÞ ¼ c0 þ c1tþ c2t2þ · · · is a Taylor expan-
sion, the coefficients ck s do not depend on the number of
terms. However, in this case, the constant term c0 ¼P

N
k¼0 ð−1Þkak obviously depends on the number of terms N.

Hence this is not an example of Taylor expansion.) This fact
will be demonstrated in Sec. 3.3 Eq. (31) using fðtÞ ¼ t3∕2 as
an example.

2.2 Theoretical Estimation of the Decreasing Speed
of Zernike Coefficients

For a generic monomial fðtÞ ¼ r2α ¼ tα ðα > 0Þ, the coef-
ficients of Eq. (5) are expressed by the gamma function.18

That is,

EQ-TARGET;temp:intralink-;e006;326;485an ¼
ð2nþ 1ÞΓðαþ 1Þ2

Γðαþ nþ 2ÞΓðα − nþ 1Þ : (6)

Hence, the expansion becomes

EQ-TARGET;temp:intralink-;e007;326;429fðtÞ ¼ tα ¼
X∞
n¼0

ð2nþ 1ÞΓðαþ 1Þ2
Γðαþ nþ 2ÞΓðα − nþ 1ÞQnðtÞ: (7)

Braat and Janssen18 gave an equivalent formulation by
analytical extension of an even-order term. We present
another derivation of this expression by use of the beta func-
tion Bðp; qÞ. Substituting fðtÞ ¼ tα into Eq. (5) and integrat-
ing by part,
EQ-TARGET;temp:intralink-;e008;326;330

an ¼ ð2nþ 1Þ ð−1Þ
n

n!

Z1

0

tα
dn

dtn
tnð1 − tÞndt

¼ 2nþ 1

n!
αðα − 1Þ · · · ðα − nþ 1Þ

Z1

0

tα−ntnð1 − tÞndt

¼ 2nþ 1

n!
Γðαþ 1Þ

Γðα − nþ 1ÞBðαþ 1; nþ 1Þ

¼ ð2nþ 1Þ Γðαþ 1Þ2
Γðα − nþ 1ÞΓðαþ nþ 2Þ : (8)

The last equality is derived by Bðp; qÞ ¼ ΓðpÞΓðqÞ∕
Γðpþ qÞ.

In order to evaluate the convergence, we estimate the
decreasing speed of an. For representing an odd-order
aspherical surface, let α be a noninteger and α ≥ 1∕2. The
minimum α ¼ 1∕2 corresponds to the first-order surface or
the cone. By Euler’s reflection formula ΓðzÞΓð1 − zÞ ¼
sin πz
π ,
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EQ-TARGET;temp:intralink-;e016;63;748Γðα − nþ 1Þ ¼ sin πðn − αÞ
π

1

Γðn − αÞ : (9)

By the definition of the gamma function of Γðzþ 1Þ ¼
zΓðzÞ,
EQ-TARGET;temp:intralink-;e010;63;695Γðαþ nþ 2Þ ¼ ðαþ nþ 1Þðαþ nÞΓðnþ αÞ: (10)

The denominator of Eq. (6) is
EQ-TARGET;temp:intralink-;e011;63;653

Γðαþ nþ 2ÞΓðα − nþ 1Þ ¼ sin πðn − αÞ
π

ðαþ nþ 1Þ

× ðαþ nÞΓðnþ αÞ
Γðn − αÞ : (11)

Since α ≥ 1∕2, the inequality nþ α > nþ α − 1 ≥ n − α
holds. Since ΓðxÞ > ΓðyÞ for positive numbers, x > y > 0.
Then, Γðnþ αÞ is evaluated as
EQ-TARGET;temp:intralink-;e012;63;549

Γðnþ αÞ ¼ ðnþ α − 1ÞΓðnþ α − 1Þ > ðnþ α− 1ÞΓðn − αÞ
where n > α: (12)

Therefore,
EQ-TARGET;temp:intralink-;e013;63;488

jΓðαþ nþ 2ÞΓðα − nþ 1Þj >
���� sin πðn − αÞ

π

����
ðαþ nþ 1Þðαþ nÞðnþ α − 1Þ: (13)

Thus,
EQ-TARGET;temp:intralink-;e014;63;420

janj ¼
���� ð2nþ 1ÞΓðαþ 1Þ2
Γðαþ nþ 2ÞΓðα − nþ 1Þ

����
< M

���� ð2nþ 1Þ
ðαþ nþ 1Þðαþ nÞðαþ n − 1Þ

����; (14)

where M ¼ j sin πðn−αÞ
π j is a positive number. Hence, janj

decreases faster than or equally to n−2.

2.3 Another Representation of Coefficients for Odd-
Order Surfaces and a More Strict Theoretical
Estimation of Their Decreasing Speed

We present a more detailed formulation for the odd-order
case ðr2 k−1 ¼ t

2 k−1
2 Þ. As far as we know, this concrete esti-

mation has not been studied. If n ≥ k, substituting the
equalities of the gamma function of half-integer15

EQ-TARGET;temp:intralink-;e015;326;633Γ
�
1

2
þm

�
¼ ð2mÞ!

4mm!

ffiffiffi
π

p
;Γ

�
1

2
−m

�
¼ ð−4Þmm!

ð2mÞ!
ffiffiffi
π

p
(15)

into Eq. (6), we obtain

EQ-TARGET;temp:intralink-;e016;326;577

an ¼ 4nþkþ1
ðnþ kþ 1Þ!

f2ðnþ kþ 1Þg!
f2ðn − kÞg!

ð−4Þn−kðn − kÞ!

× ð2nþ 1Þ
�ð2kÞ!
4kk!

�
2

¼ ð−1Þn−k42 kþ1
ðnþ kþ 1Þ · · · ðn − kþ 1Þ

ð2nþ 2kþ 2Þ · · · ð2n − 2kþ 1Þ

× ð2nþ 1Þ
�ð2kÞ!
4kk!

�
2

: (16)

Since Eq. (16) includes 2kþ 1 terms of n in the numerator
and 4kþ 1 terms of n in the denominator, an decreases as
fast as n−2 k, which is faster than the estimation described
in Eq. (14).

For the third-order surface, substituting k ¼ 2 into
Eq. (16), we obtain an explicit expression as

EQ-TARGET;temp:intralink-;e017;63;347an ¼ ð−1Þnð2nþ 1Þ 9

16
×

210ðnþ 3Þðnþ 2Þðnþ 1Þnðn − 1Þ
ð2nþ 6Þð2nþ 5Þð2nþ 4Þð2nþ 3Þð2nþ 2Þð2nþ 1Þ2nð2n − 1Þð2n − 2Þð2n − 3Þ . (17)

Thus, the coefficient an decreases as fast as n−4.
Furthermore for the first-order surface, which describes

the cone, substituting k ¼ 1 into Eq. (16), we obtain an
explicit expression as

EQ-TARGET;temp:intralink-;e018;63;244an ¼ ð−1Þn−1ð2nþ 1Þ

×
ðnþ 2Þðnþ 1Þnðn − 1Þ

ð2nþ 4Þð2nþ 3Þð2nþ 2Þð2nþ 1Þ2nð2n − 1Þ :
(18)

This decreases as fast as n−2, which corresponds to the
minimum speed of decrease described in Eq. (14).

2.4 Derivatives of Zernike Polynomials

Derivatives of Zernike polynomials have been already thor-
oughly discussed.19–21 In this paper, we present a simple
formulation for the rotationally symmetrical case.

According to Appendix A, it is enough to discuss the
derivatives by t ¼ r2 instead of the radial coordinate r.

Since QnðtÞ is a polynomial to the n’th power, its derivative
Qn

0ðtÞ must be described as a linear combination of
fQkðtÞgn−1k¼0. Thus,

EQ-TARGET;temp:intralink-;e019;326;256Q 0
nðtÞ ¼ c0Q0ðtÞ þ c1Q1ðtÞþ · · · cn−1Qn−1ðtÞ: (19)

By the orthogonality shown in Eq. (3), the coefficient
cm is
EQ-TARGET;temp:intralink-;e020;326;203

cm ¼ ð2mþ 1Þ
Z1

0

Qn
0ðtÞQmðtÞdt

¼ ð2mþ 1Þ½QnðtÞQmðtÞ�10 − ð2mþ 1Þ
Z1

0

QnðtÞQ 0
mðtÞdt:

(20)

Since Qnð0Þ ¼ ð−1Þn andQnð1Þ ¼ 1, the first term of the
right side is ð2mþ 1Þfð−1Þnþm − 1g. The second term is
zero because the order of Qm

0ðtÞ is less than QnðtÞ. Thus
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EQ-TARGET;temp:intralink-;e021;63;752cm ¼ ð2mþ 1Þfð−1Þnþm − 1g: (21)

Therefore, Eq. (19) is represented as
EQ-TARGET;temp:intralink-;e022;63;719

Q 0
2kþ1ðtÞ ¼ 2

Xk
j¼0

ð4jþ 1ÞQ2jðtÞ;

Q 0
2kðtÞ ¼ 2

Xk
j¼1

ð4j − 1ÞQ2j−1ðtÞ: (22)

For example, the first six terms of this derivation are def-
initely shown as
EQ-TARGET;temp:intralink-;e023;63;611

Q 0
0 ¼ 0;

Q 0
1 ¼ 2Q0;

Q 0
2 ¼ 6Q1;

Q 0
3 ¼ 2Q0 þ 10Q2;

Q 0
4 ¼ 6Q1 þ 14Q3;

Q 0
5 ¼ 2Q0 þ 10Q2 þ 18Q4: (23)

2.5 Sums of Expansion Coefficients

When we consider fðtÞ ¼ tα, then fð0Þ ¼ 0 and fð1Þ ¼ 1.
Since Qnð0Þ ¼ ð−1Þn and Qnð1Þ ¼ 1, when substituting
t ¼ 0; 1 into Eq. (4), the following relations hold:
EQ-TARGET;temp:intralink-;e024;63;443

fð0Þ ¼ a0 − a1 þ a2− · · ·¼
X∞
n¼1

ð−1Þnan ¼ 0;

fð1Þ ¼ a0 þ a1 þ a2þ · · ·¼
X∞
n¼1

an ¼ 1: (24)

By adding and subtracting the two equations of Eq. (24)

EQ-TARGET;temp:intralink-;e025;63;351

X∞
k¼1

a2k ¼
X∞
k¼1

a2k−1 ¼
1

2
: (25)

3 Uniform Convergence of Zernike Expansion in
Shape and Slope for Odd-Order Aspherical
Surface

In general, let us consider a function gðtÞ and its expansion
gðtÞ ¼ P

hnWnðtÞ, where fWnðtÞg is an arbitrary sequence
of functions. Even though gðtÞ ¼ P

hnWnðtÞ converges uni-
formly, its termwise differential

P
hnWn

0ðtÞ does not nec-
essarily converge to g 0ðtÞ.

As shown in Sec. 2, when fðtÞ represents an odd-order
surface shape, its Zernike expansion fðtÞ ¼ P

anQnðtÞ con-
tains an infinite number of terms. In optical ray tracing, since
the direction of the exit ray is determined by the surface
slope, it is expected that

P
anQn

0ðtÞ converges to the sur-
face slope f 0ðtÞ. In this section, we prove the convergence of
both fðtÞ ¼ P

anQnðtÞ and f 0ðtÞ ¼ P
anQn

0ðtÞ.

3.1 Convergence of Surface Shapes

We present a proof of the uniform convergence of Eq. (7).
For an odd-order surface, janj decreases faster than or
equally to n−2. Since jQnðtÞj ≤ 1, there exists a positive
number C and an integer N such that

EQ-TARGET;temp:intralink-;e026;326;752ja0Q0ðtÞ þ a1Q1ðtÞ þ a2Q2ðtÞ · · · j

≤
X∞
n¼0

janj ≤
XN
n¼0

janj þ C
X∞

n¼Nþ1

1

n2
<
XN
n¼0

janj þ
Cπ2

6
:

(26)

Thus, we conclude that the convergence of the expansion
Eq. (7) for any odd-order surface is uniform and absolute by
the Weierstrass M-test.15

3.2 Convergence of Surface Slopes

To discuss the convergence of the surface slope of an odd-
order surface, let us consider the monomial fðtÞ ¼
t
2k−1
2 ¼ r2k−1 on the interval [0, 1]. To guarantee the continu-

ity of the derivative, we suppose that the parameter k ≥ 2
(higher than the third-order surface). Since the case k ¼ 1
corresponds to the first-order surface or the cone, the original
function fðtÞ ¼ ffiffi

t
p

has a singular point at the origin.
Although this case is considered as an exceptional case in
this paper, similar discussion will be applied to excluding
the origin in Sec. 3.4.

Since the derivative f 0ðtÞ is also continuous, this function
is also expanded as

EQ-TARGET;temp:intralink-;e027;326;495f 0ðtÞ ¼ b0QoðtÞ þ b1Q1ðtÞ þ b2Q2ðtÞþ · · ·

¼
X∞
k¼0

bnQnðtÞ; (27)

By the analogy of Fourier analysis of derivatives, the con-
vergence in slopes is proven if the following two conditions
are satisfied:

Condition 1. Convergence of slope:
P∞

k¼0 bnQnðtÞ con-
verges to f 0ðtÞ.

Condition 2. Consistency of termwise differential: the
equality

EQ-TARGET;temp:intralink-;e028;326;346

X∞
k¼0

anQ 0
nðtÞ ¼

X∞
k¼0

bnQnðtÞ (28)

holds.
Since f 0ðtÞ is also the odd-order surface of order

ð2 k − 3Þ∕2, the proof of condition 1 is the direct conclusion
of the discussion of Sec. 3.1.

To show condition 2, we give a straightforward calcula-
tion of the left side of Eq. (28). According to the Zernike
derivatives formulae Eq. (23), by differentiating Eq. (4)
formally
EQ-TARGET;temp:intralink-;e029;326;202ða0Q0ðtÞ þ a1Q1ðtÞ þ a2Q2ðtÞþ · · · Þ 0
¼ 2ða1 þ a3 þ a5þ · · · ÞQ0

þ 6ða2 þ a4 þ a6þ · · · ÞQ1

þ 10ða3 þ a5 þ a7þ · · · ÞQ2

þ 14ða4 þ a6 þ a8þ · · · ÞQ3

þ 18ða5 þ a7 þ a9þ · · · ÞQ4

· · · (29)
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By the procedure described in Appendix B and Eq. (25), the
coefficients bk are

EQ-TARGET;temp:intralink-;e030;63;595

b0 ¼ 1 ¼ 2ða1 þ a3 þ a5þ · · · Þ;

b1 ¼ 6

�
1

2
− a0

�
¼ 6ða2 þ a4 þ a6þ · · · Þ;

b2 ¼ 10

�
1

2
− a1

�
¼ 10ða3 þ a5 þ a7þ · · · Þ;

b3 ¼ 14

�
1

2
− a0 − a2

�
¼ 14ða4 þ a6 þ a8þ · · · Þ;

b4 ¼ 18

�
1

2
− a1 − a3

�
¼ 18ða5 þ a7 þ a9þ · · · Þ;

b5 ¼ 22

�
1

2
− a0 − a2 − a4

�
¼ 22ða6 þ a8 þ a10þ · · · Þ:

(30)

Thus, the right side of Eq. (28) is identical to the left side
of this equation.

3.3 Numerical Confirmation for f ðtÞ ¼ t3∕2 ¼ r 3

By Eq. (17), we obtain

EQ-TARGET;temp:intralink-;e031;63;340

t
3
2 ≅

2

5
Q0ðtÞ þ

18

35
Q1ðtÞ þ

2

21
Q2ðtÞ −

2

165
Q3ðtÞ

þ 18

5005
Q4ðtÞ −

2

1365
Q5ðtÞ

¼ 4

2145
þ 28

143
tþ 224

143
t2 −

224

143
t3 þ 168

143
t4 −

24

65
t5: (31)

Also by Eq. (30), the coefficients of derivatives are cal-
culated as follows:

EQ-TARGET;temp:intralink-;e032;63;226

b0 ¼ 1;

b1 ¼ 6 ×
�
1

2
− a0

�
¼ 3

5
;

b2 ¼ 10 ×
�
1

2
− a1

�
¼ −

1

7
;

b3 ¼ 14 ×
�
1

2
− ða0 þ a2Þ

�
¼ 1

15
;

b4 ¼ 18 ×
�
1

2
− ða1 þ a3Þ

�
¼ −

3

77
: (32)

Thus, the expansion of the derivatives is

EQ-TARGET;temp:intralink-;e033;326;606

d

dt
ðt3∕2Þ ≅ Q0ðtÞ þ

3

5
Q1ðtÞ −

1

7
Q2ðtÞ þ

1

15
Q3ðtÞ

−
3

77
Q4ðtÞ: (33)

The fitting errors of Eqs. (31) and (32) are shown in Fig. 1
To estimate the maximum error versus the number of

Zernike polynomials, we present the list of coefficients up
to n ¼ 15 in Table 1. Since the maximum errors occur at
the origin, the errors can be estimated by

P
n
k¼0 ð−1Þnan for

the shape and
P

n
k¼0 ð−1Þnbn for the slope. Both of them

converge to zero when n → ∞.
Since fðtÞ ¼ t3∕2 and f 0ðtÞ ¼ ð3∕2Þt1∕2, the decreasing

speed of the coefficients is as fast as n−4 in shapes by
Eq. (17)
and n−2 in slopes by Eq. (18), respectively. Thus, Zernike
expansions both in shape and in slope converge to the origi-
nal functions. The behaviors of the maximum errors as func-
tions of the number of Zernike terms are shown in Fig. 2.

3.4 Approximation for the Cone f ðtÞ ¼ t1∕2 ¼ r

The cone is not an example of smooth odd-order functions.
However, as discussed in Secs. 2.3 and 3.1, the Zernike
expansion of the cone converges uniformly to fðtÞ ¼ t1∕2.
Thus, the cone ure is approximated enough by the Zernike
expansion including the origin. Moreover, the similar discus-
sions in Secs. 3.2 and 3.3 can be applied to the cone except at
the singular point or the origin. However, the Zernike expan-
sion of f 0ðtÞ diverges at the origin because its expansion
gives a diverging series.

Actually, by Eq. (6), the expansion coefficients of f 0ðtÞ
are

EQ-TARGET;temp:intralink-;e034;326;234bn ¼
1∕2ð2nþ 1ÞΓð1∕2Þ2
Γð3∕2þ nÞΓð1∕2 − nÞ : (34)

By Eq. (15), the denominator is
EQ-TARGET;temp:intralink-;e035;326;178

Γ
�
3

2
þ n

�
Γ
�
1

2
− n

�
¼ ð2nþ 2Þ!

4nþ1ðnþ 1Þ!
ffiffiffi
π

p
×
ð−4Þnn!
ð2nÞ!

ffiffiffi
π

p

¼ ð−1Þnð2nþ 2Þð2nþ 1Þπ
4ðnþ 1Þ

¼ ð−1Þn 2nþ 1

2
π: (35)

Since Γð1∕2Þ ¼ ffiffiffi
π

p
,

Fig. 1 Fitting errors in shape and slope for the third order surface. (N ¼ 5).
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EQ-TARGET;temp:intralink-;e036;63;402bn ¼ ð−1Þn: (36)

Thus,

EQ-TARGET;temp:intralink-;e037;63;369

X∞
k¼0

bnQnð0Þ ¼
X∞
k¼0

ð−1Þnð−1Þn ¼
X∞
k¼0

1 ¼ ∞: (37)

Hence, the sum jP∞
k¼0 bnQnðtÞj does not converge at the

origin.
Another explanation is possible as follows. Since the cone

is described as fðtÞ ¼ t1∕2 ¼ jrj on the interval [−1; 1], the
differential is

EQ-TARGET;temp:intralink-;e038;63;271

df
dr

¼
�
−1 ðr < 0Þ
1 ðr > 0Þ : (38)

This conclusion intuitively meets the fact that the cone has a
singular point at the vertex.

4 Design Example

4.1 Schmidt Surface

In this section, we evaluate the approximation accuracy of
the Zernike expansion and discuss the aberration properties
of odd-order surfaces via the optical design of the Schmidt
corrector plate. The corrector plate is incorporated into the

Table 1 Errors in shape and slope for the third order surface (N ≤ 15).

n an
Pn

k¼0 ð−1Þk ak bn
Pn

k¼0 ð−1Þkbk

0 4.0000E − 01 4.0000E − 01 1.0000Eþ 00 1.0000Eþ 00

1 5.1429E − 01 −1.1429E − 01 6.0000E − 01 4.0000E − 01

2 9.5238E − 02 −1.9048E − 02 −1.4286E − 01 2.5714E − 01

3 −1.2121E − 02 −6.9264E − 03 6.6667E − 02 1.9048E − 01

4 3.5964E − 03 −3.3300E − 03 −3.8961E − 02 1.5152E − 01

5 −1.4652E − 03 −1.8648E − 03 2.5641E − 02 1.2587E − 01

6 7.1301E − 04 −1.1518E − 03 −1.8182E − 02 1.0769E − 01

7 −3.8970E − 04 −7.6209E − 04 1.3575E − 02 9.4118E − 02

8 2.3135E − 04 −5.3074E − 04 −1.0526E − 02 8.3591E − 02

9 −1.4615E − 04 −3.8459E − 04 8.4034E − 03 7.5188E − 02

10 9.6917E − 05 −2.8768E − 04 −6.8650E − 03 6.8323E − 02

11 −6.6834E − 05 −2.2084E − 04 5.7143E − 03 6.2609E − 02

12 4.7595E − 05 −1.7325E − 04 −4.8309E − 03 5.7778E − 02

13 −3.4821E − 05 −1.3843E − 04 4.1379E − 03 5.3640E − 02

14 2.6067E − 05 −1.1236E − 04 −3.5842E − 03 5.0056E − 02

15 −1.9903E − 05 −9.2455E − 05 3.1348E − 03 4.6921E − 02

Fig. 2 Convergence of the maximum errors for f ðtÞ ¼ t3∕2. Fig. 3 Layout of Schmidt camera.
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Schmidt camera and corrects the spherical aberration of the
primary mirror. The optical layout of the Schmidt camera is
shown in Fig. 3. Even though corrector surfaces are conven-
tionally designed only with even-order terms containing the
power,22,23 the design with odd-order terms has been known
as the Schmidt surface24.

The specifications of the design example are shown in
Table 2 and the basic lens data are shown in Table 3. The
surface indicated by (*) in Table 3 is the corrector surface.
The aperture stop is also placed there. For simplicity, we
employ only the third term and even-order terms for the cor-
rector plate. Thus, the aspherical sag of surface (*) is given as
follows:

EQ-TARGET;temp:intralink-;e039;63;429z ¼ A2r2 þ A3r3 þ A4r4 þ A6r6þ · · · (39)

Note that all optical design and analysis is achieved with
Code-VTM.

4.2 Design Results and Discussion

We compare the original third-order design with its approxi-
mation design by the even-order expansion. To obtain a dif-
fraction-limited design, the third and even orders up to the
16th are needed. By decomposing the third coefficients by
Eq. (17) and adding to the original even-order coefficients,
we obtain the diffraction-limited design by expanded shape
as well, in which even orders up to the 20th are needed. The
aspherical coefficients are shown in Table 4.

The error in shape is shown in Fig. 4. If we use more
Zernike terms, the dominant error at the origin will be gradu-
ally reduced.

The peak-to-valley error in Fig. 4 is 3.88 × 10−5 mm,
which corresponds to 0.034λ. The comparison of wavefront
map and the RMS wavefront ΔW of the two designs is
shown in Fig. 5. Note that the RMS wavefront is calculated
without considering the central obscuration.

The expanded shape is a fair approximation of the
original surface shape. From the viewpoint of practical
optical design, the wavefront aberrations in both designs are
almost identical. Thus, the third-order surface is almost
completely approximated by a finite sum of even-order
terms.

In addition, since there is the A2 term in the expanded
shape, the third-order surface acts as an aspherical surface
containing the power, which is necessary in conventional
designs. Although the power term induces slight change in
the paraxial relation, the third-order surface does not affect
the paraxial relation formally. Consequently, we can con-
clude that this property is one reason for the effectiveness of
odd-order surfaces. Even though we have proven that the
third-order aspherical surface is fairly approximated by a

Table 2 Design specification.

Features Requirements

Wavelength 587.56 nm

Focal length 200 mm

F number 3

Half FOV 7 deg

Residual wavefront aberration <0.0156λ RMS

(Strehl ratio > 0.99)

Table 3 Basic lens data.

R d Glass

0 Infinity Infinity

1 Infinity 10 n ¼ 1.51633

2(*) Infinity 200

3 Infinity 200

4 −400 −200.000 Reflect

5 Variable Variable

Table 4 Odd order and approximation coefficients.

Aspherical coefficients Original design Approximation

A2 −1.009321E − 05

A3 −2.923781E − 06

A4 2.192910E − 07 −4.641273E − 08

A6 −4.867503E − 10 5.052101E − 10

A8 1.023192E − 12 −2.492068E − 12

A10 −1.418425E − 15 7.259246E − 15

A12 1.199493E − 18 −1.314277E − 17

A14 −5.588738E − 22 1.495951E − 20

A16 1.096804E − 25 −1.041559E − 23

A18 4.054177E − 27

A20 −6.760936E − 31

Fig. 4 Fitting error in shape.
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finite sum of even-order terms, we infer that there are some
other reasons for the effectiveness. This is our future issue.

5 Conclusion
In this paper, we have shown that odd-order surfaces are
fairly approximated by a finite number of Zernike polyno-
mials. Rearranging the order of monomials, odd-order
surfaces are fully approximated by a finite number of
even-order power series.

To show this, we have proven the uniform convergence of
Zernike expansion of odd-order surfaces both in surface
shapes and slopes. By estimating the decreasing speed of
the expansion coefficients, any odd-order surface is precisely
approximated to be an optical surface by a finite number of
Zernike polynomials. In other words, odd-order surfaces are
fairly approximated by ordinary even-order aspherical surfa-
ces. For the first-order surface, the Zernike expansion approx-
imates the shape. However, the expansion of the slope does not
make sense because the coefficients give a diverging series.

We have demonstrated the result by a design of a Schmidt
surface and confirmed that the effect of the third-order sur-
face can be fully expressed by the 20th even-order surface.
The power term is necessary in classical design of Schmidt
cameras. However, in the calculation of paraxial quantity,
odd-order surfaces do not affect values such as focal lengths,
paraxial magnifications, and so on. This is one reason why
odd-order surfaces are effective in optical design. Since we
infer that there are some other reasons for the odd order’s
effectiveness, this will be our future problem.

Our analysis method is useful for not only analysis of
aberration characteristics of aspherical surfaces but also
optical measurement especially in the accuracy estimation
of approximation of generic surfaces by finite number of
terms. Analyzing another expression of odd-order surfaces
such as Qcon polynomials is a future issue.

Appendix A: Conversion of the Radial
Coordinate in the Derivative Formulae
In the definition of Zernike polynomials Eq. (1) and expan-
sion Eq. (4), the converted coordinate t ¼ r2 is used instead
of the original coordinate r. Considering that the surface
is given by z ¼ Fðx; yÞ, due to the law of refraction, the
direction of the exit ray is determined by the surface slopes
∂F∕∂x and ∂F∕∂y. If Fðx; yÞ is rotationally symmetric,
Fðx; yÞ should be a function of t ¼ r2, i.e., Fðx; yÞ ¼ fðtÞ.

Consider the Zernike expansion of fðtÞ ¼ P
anQnðtÞ,

the slopes are rewritten as
EQ-TARGET;temp:intralink-;e040;326;327

∂F
∂x

¼ ∂t
∂x

df
dt

¼ 2x

�X
anQnðtÞ

� 0
;

∂F
∂y

¼ ∂t
∂y

df
dt

¼ 2y

�X
anQnðtÞ

� 0
: (40)

Thus, in the context of Zernike expansion and its deriv-
atives, it is enough to prove the equality of the termwise
derivative ðPanQnðtÞÞ0 ¼

P
anQn

0ðtÞ and its convergence.

Appendix B: Derivation of the Coefficients bk

We present a straightforward derivation of the expansion
coefficients bk. By differentiating Eq. (4) formally, we obtain
EQ-TARGET;temp:intralink-;e041;326;170ða0Q0ðtÞ þ a1Q1ðtÞ þ a2Q2ðtÞþ · · · Þ 0

¼ 2
X∞
n¼0

�
f2 × 2nþ 1gQ2nðtÞ

X∞
k¼nþ1

a2k−1

þ f2ð2nþ 1Þ þ 1gQ2nþ1ðtÞ
X∞

k¼nþ1

a2k

�
: (41)

At this stage, the convergence of Eq. (41) is not guaranteed.

Fig. 5 Design comparison.
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The coefficients bm in Eq. (27) are calculated by the
orthogonality of QmðtÞ,
EQ-TARGET;temp:intralink-;e042;63;730

bm ¼ ð2mþ 1Þ
Z1

0

f 0ðtÞQmðtÞdt

¼ ð2mþ 1Þ
�
fðtÞQmðtÞj10 −

Z1

0

fðtÞQm
0ðtÞdt

�

¼ ð2mþ 1Þ
�
1 −

Z1

0

fðtÞQ 0
mðtÞdt

�
: (42)

This calculation differs according to the parity of m. If m
is even,
EQ-TARGET;temp:intralink-;e043;63;572

b2n ¼ ð4nþ 1Þ
�
1 −

Z1

0

fðtÞQ2n
0ðtÞdt

�

¼ ð4nþ 1Þ
�
1 − 2

Z1

0

fðtÞ
Xn
k¼1

ð4k − 1ÞQ2k−1ðtÞdt
�
: (43)

Since
EQ-TARGET;temp:intralink-;x2;63;466 Z1

0

fðtÞð4k − 1ÞQ2k−1ðtÞdt

¼ f2ð2k − 1Þ þ 1g
Z1

0

fðtÞQ2k−1ðtÞdt ¼ a2k−1;

the expansion coefficient b2n is rewritten as

EQ-TARGET;temp:intralink-;e044;63;361b2n ¼ ð4nþ 1Þ
�
1 − 2

Xn
k¼1

a2k−1

�
: (44)

By Eq. (25),

EQ-TARGET;temp:intralink-;e045;63;305b2n ¼ 2ð4nþ 1Þ
X∞

k¼nþ1

a2k−1: (45)

This is identical to the coefficient of Q2nðtÞ in Eq. (41).
By the same procedure, the case of m ¼ odd is proven,
namely,

EQ-TARGET;temp:intralink-;e046;63;229b2nþ1 ¼ 2ð4nþ 3Þ
X∞

k¼nþ1

a2k: (46)
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