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1 Introduction
Projective geometry is an important topic in computer vision
because it provides a useful camera imaging model and its
fundamental properties.1 Some applications of this topic are
found in camera motion,2 camera calibration,3,4 pose estima-
tion for augmented reality,5 perspective correction,6 and
three-dimensional (3-D) surface imaging7 among others.

Theoretical concepts of projective geometry are analyzed
simply and elegantly using homogeneous coordinates.8,9

However, projective geometry is commonly presented in
abstract form, leaving a gap in how to apply it in computer
vision problems.10 Moreover, homogeneous coordinates are
used with a notation that masks basic geometrical aspects
and may confuse the inexperienced readers.11

In this paper, a simple and intuitive approach to expose
some useful concepts of projective geometry is addressed.
For this, an alternative notation for homogeneous coordi-
nates based on operators is suggested. To highlight the rel-
evance of this topic in computer vision, the presentation is
motivated by a specific problem, namely the perspective
correction for a “camera scanner” application.

First, the proposed operators for homogeneous coordi-
nates are defined in Sec. 2. Next, some basic concepts of
projective geometry in the one- (1-D) and two-dimensional
(2-D) cases are presented in Secs. 3 and 4, respectively.
Then, the pinhole camera model is derived in Sec. 5. A per-
spective correction method, useful for camera document
scanning, is described in Sec. 6. Finally, the conclusions
of this work are given in Sec. 7. The paper is complemented
with two appendices. Appendix A presents the direct linear
transformation method for homography matrix estimation.
Finally, a simple method to obtain the camera parameters
from homographies is explained in Appendix B.

2 Definition of Operators

2.1 Operators H and S

A point in an n-dimensional space will be represented by a
vector of the form

EQ-TARGET;temp:intralink-;e001;326;422x ¼ ½ x1 x2 · · · xn �T; (1)

where ½·�T denotes the transpose. The homogeneous co-
ordinates of the point are obtained by adding an extra
entry to x with a value equal to the unity. The result is
the ðnþ 1Þ-dimensional vector

EQ-TARGET;temp:intralink-;e002;326;347H½x� ¼
�
x
1

�
; (2)

where H will be referred to as the homogeneous operator.
The last entry of a homogeneous vector is known as

the scale and will be recovered by the scale operator S.
This operator returns the last entry of any given vector.
For instance, for the vectors in Eqs. (1) and (2), we have

EQ-TARGET;temp:intralink-;e003;326;249xn ¼ S½x�; and 1 ¼ S½H½x��: (3)

The operator H sets the scale to unity. Another operator
that sets the scale to zero is needed. For this, we define the
operator

EQ-TARGET;temp:intralink-;e004;326;187H0½x� ¼
�
x
0

�
: (4)

Note that the operatorH0 does not affect neither the direction
nor the norm of x. In projective geometry, the points repre-
sented by homogeneous coordinates of the form

EQ-TARGET;temp:intralink-;e005;326;105H0½x�; x ≠ 0n; (5)
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are known as ideal points, where 0n ¼ ½0; · · · ; 0�T is the
n-dimensional zero vector.

The operators H and H0 can be considered as two
particular cases of a more general operator defined as

EQ-TARGET;temp:intralink-;e006;63;708Hs½x� ¼
�
x
s

�
; (6)

where s is any scalar.
The procedure of adding an extra entry to vectors is

reverted by returning the given vector except its last entry.
For this, we define the inverse operator H−1

0 as follows.

For any ðnþ 1Þ-dimensional vector

EQ-TARGET;temp:intralink-;e007;326;741y ¼ ½ y1 y2 · · · yn ynþ1 �T; (7)

the operator H−1
0 is defined as

EQ-TARGET;temp:intralink-;e008;326;699H−1
0 ½y� ¼ ½ y1 y2 · · · yn �T: (8)

Based on the operatorH−1
0 , the inverse of the operatorHs for

s ≠ 0 is defined as

Table 1 Some useful equalities of the operators S, Hs , and PM;s . In all cases, we consider λ ≠ 0, γ1 and γ2 are any scalars, x is a n-dimensional
vector as given in Eq. (1), Ξs is the matrix defined in Eq. (13), y ¼ λHs ½x�, M is a matrix of size ðn þ 1Þ × ðn þ 1Þ, and W is a matrix of size
m × ðn þ 1Þ.

Property Description

(P1) H−1
s ½Hs ½x�� ¼ x s ≠ 0

(P2) Hs ½H−1
s ½y�� ¼ s

S½y�y s ≠ 0

(P3) x ¼ H−1
s ½y� ↔ S½y�

s
Hs ½x� ¼ y s ≠ 0

(P4) Hs ½λx� ¼ λHs∕λ½x�

(P5) λHs½x� ¼ Hλs ½λx�

(P6) Hs ½WHs ½x�� ¼
�

W
H½0n �T

�
Hs ½x�

(P7) Hs ½x1 � x2� ¼ Hs1 ½x1� �Hs2 ½x2� s1 � s2 ¼ s

(P8) H−1
s ½λy� ¼ H−1

s ½y� s ≠ 0

(P9) λH−1
s ½y� ¼ H−1

λs ½y� s ≠ 0

(P10) H−1
0 ½γ1y1 þ γ2y2� ¼ γ1H−1

0 ½y1� þ γ2H−1
0 ½y2�

(P11) S½γ1x1 þ γ2x2� ¼ γ1S½x1� þ γ2S½x2�

(P12) H−1
s ½y1 þ y2� ¼

1
S½y1 þ y2�

ðS½y1�H−1
s ½y1� þ S½y2�H−1

s ½y2�Þ s ≠ 0

(P13) H−1
s ½y1 þ y2� −H−1

s ½y1� ¼
S½y2�

S½y1 þ y2�
ðH−1

s ½y2� −H−1
s ½y1�Þ s ≠ 0

(P14) Hs ½x� ¼ ΞsH½x�

(P15) H−1
s ½y� ¼ H−1½Ξ−1

s y� s ≠ 0

(P16) PλM;s ½x� ¼ PM;s½x� s ≠ 0

(P17) P−1
M;s ½x� ¼ PM−1 ;s½x� detM ≠ 0

(P18) x2 ¼ PM;s½x1� ↔ PM−1 ;s ½x2� ¼ x1 det M ≠ 0

(P19) PM;s ½λx� ¼ λPM;s∕λ½x�

(P20) λPM;s½x� ¼ PM;λs ½λx�

(P21) PM2 ;s½PM1 ;s ½x�� ¼ PM2M1 ;s½x�

(P22) PIn ;s½x� ¼ x

(P23) PM;s ½x� ¼ PΞ−1
s MΞs

½x� s ≠ 0

(P24) Hs ½PM;s ½x�� ¼
s

S½MH½x��MH½x� s ≠ 0

(P25) PM;s ½H−1
s ½y�� ¼ H−1

s ½My� s ≠ 0
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EQ-TARGET;temp:intralink-;e009;63;752H−1
s ½y� ¼ s

S½y�H
−1
0 ½y�: (9)

In particular, the operator H−1
1 (written simply as H−1) will

be referred to as the inverse homogeneous operator.
The inverse H−1

0 is a linear operator. That is, for any two
scalars λ1 and λ2, we have

EQ-TARGET;temp:intralink-;e010;63;676H−1
0 ½λ1y1 þ λ2y2� ¼ λ1H−1

0 ½y1� þ λ2H−1
0 ½y2�: (10)

On the other hand, the operator H−1
s is invariant to nonzero

scalar multiplication of its argument. That is,

EQ-TARGET;temp:intralink-;e011;63;622H−1
s ½λy� ¼ H−1

s ½y�; s; λ ≠ 0: (11)

The operators Hs and H−1
s can be expressed in terms of the

homogeneous operator and its inverse, namely
EQ-TARGET;temp:intralink-;e012;63;568

Hs½x� ¼ ΞsH½x�; and

H−1
s ½y� ¼ H−1½Ξ−1

s y�; s ≠ 0; (12)

where

EQ-TARGET;temp:intralink-;e013;63;507Ξs ¼
�
In 0n
0Tn s

�
; (13)

and In being the n × n identity matrix.

2.2 Projection Operator P

In general terms, the homogeneous operator carries the
representation of a point from n- to ðnþ 1Þ-dimensional
vectors while the inverse homogeneous operator returns
the representation from ðnþ 1Þ- to n-dimensional vectors.
An important transformation emerges when, in the
ðnþ 1Þ-dimensional space, a linear mapping is applied.
Mathematically, we describe this transformation by the pro-
jection operator defined as

EQ-TARGET;temp:intralink-;e014;63;341PM½x� ¼ H−1½MH½x��; (14)

where M is an ðnþ 1Þ × ðnþ 1Þ matrix. A generalized
version of the projection operator is obtained using Hs
and its inverse as

EQ-TARGET;temp:intralink-;e015;63;277PM;s½x� ¼ H−1
s ½MHs½x��: (15)

From Eq. (11), it follows that, for s ≠ 0, the operator PM;s is
invariant to nonzero scalar multiplication of the matrix M;
that is

EQ-TARGET;temp:intralink-;e016;63;212PλM;s½x� ¼ PM;s½x�; s; λ ≠ 0: (16)

Let b ¼ PM;s½a� with M being a nonsingular matrix. From
Eq. (15), we have that a ¼ H−1

s ½M−1Hs½b��. Therefore, the
inverse operator P−1

M;s is given by

EQ-TARGET;temp:intralink-;e017;63;147P−1
M;s½x� ¼ PM−1;s½x�; det M ≠ 0; (17)

where det M denotes the determinant of M.
Using the equations in Eq. (12), the operator PM;s can be

expressed in terms of the projection operator, namely

EQ-TARGET;temp:intralink-;e018;326;752PM;s½x� ¼ PΞ−1
s MΞs

½x�; s ≠ 0: (18)

Note that M and Ξ−1
s MΞs are similar matrices. Some useful

equalities of the defined operators are summarized in
Table 1. For a more comprehensible reading of this paper,
the reader is encouraged to demonstrate all the equalities
in Table 1.

In the following sections, the defined operators are stud-
ied from an intuitive geometrical approach for the 1-D and
2-D cases. Then, the usefulness of this theoretical framework
is illustrated by addressing the perspective correction prob-
lem for camera document scanning.

3 One-Dimensional Space
The 1-D real space can be represented as a line as shown in
Fig. 1(a). In this space, a point at a finite distance from the
origin is represented by a real number x; otherwise, the point
is represented by the symbol ∞.

Alternatively, the 1-D space can be represented by the
projective line y ¼ 1 in the xy-plane as shown in Fig. 1(b).
Thus, the coordinate x of a point in the line becomes the
vector

EQ-TARGET;temp:intralink-;e019;326;508y ¼ H½x� ¼
�
x
1

�
: (19)

The coordinate x can be recovered from its homogeneous
version y as the intersection between the line y ¼ 1 and
the line with direction H½x� passing through the origin as
shown in Fig. 1(b). This is described mathematically as

EQ-TARGET;temp:intralink-;e020;326;419x ¼ H−1½y�: (20)

Note that the result is invariant to the scalar multiplication of
y by a nonzero scalar [e.g., λ and −γ as shown in Fig. 1(b)]
because the intersection between lines is unaltered. In other
words,H−1½λy� ¼ H−1½−γy� ¼ H−1½y� as stated by Eq. (11).

3.1 Ideal Point

Homogeneous coordinates provide a different form to iden-
tify points of the real line. Consider the unit vector

Fig. 1 (a) The real line as the 1-D Euclidean space. (b) The 1-D space
represented by the projective line (y ¼ 1) in a 2-D Euclidean space.
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EQ-TARGET;temp:intralink-;e021;63;584uðθÞ ¼
�
sin θ
cos θ

�
: (21)

Thus, the homogeneous representation of x given by Eq. (19)
becomes

EQ-TARGET;temp:intralink-;e022;63;527H½x� ¼ λuðθÞ; (22)

where λ2 ¼ 1þ x2 and tan θ ¼ x. From Eq. (22), we obtain

EQ-TARGET;temp:intralink-;e023;63;485x ¼ H−1½uðθÞ�: (23)

Since a vector u and its opposite −u represent the same point
(i.e.,H−1½u� ¼ H−1½−u�), all points of the real line at a finite
distance from the origin are associated to a unique angle θ in
the open interval ð−π∕2; π∕2Þ; i.e., the vectors u different to
[1, 0] and ½−1;0� in the quadrants I and II, as shown in Fig. 2.

Intuitively, the real line in Euclidean representation has
two points at infinity, namely −∞ andþ∞. However, in pro-
jective geometry, the real line has only a single point at infin-
ity given by the homogeneous coordinates

EQ-TARGET;temp:intralink-;e024;63;354ψ ¼
�
1

0

�
; (24)

which is associated to uðπ∕2Þ, as shown in Fig. 2. It could be
argued that π∕2 corresponds to þ∞ while −π∕2 to −∞.
However, note that uð−π∕2Þ ¼ −ψ is the opposite of ψ.
Hence, they represent the same point.

Note thatH−1½ψ� ¼ 1∕0 is consistent with the notion that
ψ represents a point at infinity distance from the origin.
According to the concepts of projective geometry, the vector
ψ represents an ideal point, see Eq. (5).

3.2 One-Dimensional Projection

The line y ¼ 0 can be transformed to any other line by apply-
ing a rotation Q ¼ ½q1; q2� and a translation s. Thus, a point
in the line y ¼ 0, represented by the scalar x, becomes a point
in the xy-plane given by the vector
EQ-TARGET;temp:intralink-;e025;63;150

p ¼ qH0½x� þ s

¼ Π1H½x�; (25)

where the matrix Π1 will be referred to as the reference line
parameters and has the explicit form

EQ-TARGET;temp:intralink-;e026;326;448Π1 ¼ ½ q1 s �: (26)

The first column of Π1 and the determinant det Π1 provide
the direction of the reference line and its distance from the
origin, respectively.

If the matrix Π1 is singular, the vectors q1 and s are col-
linear. In this case, the origin is a point of the transformed
line (the distance of the line from the origin is zero).
The matrix Π1 is nonsingular when q1 and s are linearly
independent. In this case, the origin is not a point of the
transformed line.

Let p in Eq. (25) be the homogeneous coordinates of
a point α in the line. Thus, we obtain the 1-D projection
EQ-TARGET;temp:intralink-;e027;326;305

α ¼ H−1½p�
¼ H−1½Π1H½x��
¼ PΠ1

½x�: (27)

The transformations by PΠ1
½x� and its inverse PΠ−1

1
½α� are

shown in Fig. 3.

4 Two-Dimensional Space

4.1 Points and Lines in the Plane

Any point in the 2-D space can be represented as the vector

EQ-TARGET;temp:intralink-;e028;326;161x ¼ ½ x1 x2 �T: (28)

Moreover, the point x can be represented by its homo-
geneous coordinates

EQ-TARGET;temp:intralink-;e029;326;108H½x� ¼
�
x
1

�
; (29)

x –x 

y 

u /8

x1–

u0

u /2

u /4

u3 /8

u– /8

u– /4

u–3 /4

III

III IV

x2 x3–x3 –x2 –x1

Fig. 2 Representation of points of the real line using homogeneous coordinates. Opposite homogeneous
vectors represent the same point; thus, there is a single point at infinity, given by uðπ∕2Þ ¼ ½1;0�T .

1[x] 

x 

y 

x 

 

1  [ ] 

–1 

1 [x] 

1[p] 

0 

0 

Fig. 3 The 1-D projection.
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as shown in Fig. 4(a). Note that H takes the 2-D vector x (in
the plane z ¼ 0) and converts it to the 3-D vectorH½x�, where
x is unaltered but now it lies in the projective plane z ¼ 1. It
is worth mentioning that the vector x can be recovered from
λH½x� as the point of intersection of the line with points 03
and λH½x�, see Eq. (11). That is,

EQ-TARGET;temp:intralink-;e030;63;543x ¼ H−1½λH½x��; λ ≠ 0: (30)

A line in the plane xy-plane can be written as the homo-
geneous equation

EQ-TARGET;temp:intralink-;e031;63;491l1x1 þ l2x2 þ l3 ¼ 0; (31)

where l1, l2, and l3 are coefficients. Using homogeneous
coordinates, Eq. (31) becomes

EQ-TARGET;temp:intralink-;e032;63;440lTH½x� ¼ 0; (32)

where x ¼ ½x1; x2�T is a point of the line and l ¼ ½l1; l2; l3�T is
the vector that defines the line. Equation (32) exhibits that l
and H½x� are orthogonal vectors. Note that the vector l is
unique up to scale, i.e., the vectors l and λl, with λ ≠ 0, re-
present the same line.

Let x1 and x2 be two different points in the xy-plane. The
vector l of the line passing through x1 and x2 can be obtained
by the cross product as

EQ-TARGET;temp:intralink-;e033;63;321l ¼ H½x1� ×H½x2�: (33)

By definition of the cross product, the vector l is orthogonal
toH½x1� andH½x2�. Therefore, these vectors satisfy Eq. (32).

Consider two lines defined by the vectors l1 and l2. If x is
the intersection point of these lines, then H½x� is orthogonal
to l1 and l2. That is

EQ-TARGET;temp:intralink-;e034;63;237λH½x� ¼ l1 × l2; (34)

where λ ¼ S½l1 × l2�. Therefore, the intersection point of
the lines l1 and l2 is

EQ-TARGET;temp:intralink-;e035;63;186x ¼ H−1½l1 × l2�: (35)

4.2 Parallel Lines

Two different lines are parallel if its defining vectors are of
the form

EQ-TARGET;temp:intralink-;e036;63;111l ¼
2
4 l1
l2
l3

3
5; l̄ ¼ λ

2
4 l1

l2
l3 þ δ

3
5; (36)

where λ, δ ≠ 0. This can be verified as follows. Consider
two parallel lines in the plane with points α and β given,
respectively, by

EQ-TARGET;temp:intralink-;e037;326;719α ¼ aþ γd; and β ¼ aþ γdþ δt; (37)

where γ is a parameter, δ ≠ 0 is a constant, a is a reference
point, d is a unit vector with direction of the line, and t is a
unit vector orthogonal to d, i.e.,

EQ-TARGET;temp:intralink-;e038;326;655H0½t� ×H0½d� ¼ H½02�; (38)

as shown in Fig. 4(b). Two points of each line are

EQ-TARGET;temp:intralink-;sec4.2;326;613

α1 ¼ aþ γ1d; β1 ¼ aþ γ̄1dþ δt;

α2 ¼ aþ γ2d; β2 ¼ aþ γ̄2dþ δt:

Thus, the vector of the line with points α is

EQ-TARGET;temp:intralink-;e039;326;550

l ¼ H½α1� ×H½α2�
¼ ðγ2 − γ1ÞH½a� ×H0½d�; (39)

or, since the line is unaffected by scaling of its vector

EQ-TARGET;temp:intralink-;e040;326;487l ¼ H½a� ×H0½d�: (40)

Similarly, the vector of the line with points β is

EQ-TARGET;temp:intralink-;e041;326;450

l̄ ¼ H½β1� ×H½β2�
¼ ðγ̄2 − γ̄1Þðlþ δH½02�Þ
¼ λðlþ δH½02�Þ; (41)

where λ ¼ γ̄2 − γ̄1. Therefore, the vectors l and l̄ given in
Eq. (36) represent parallel lines.

It is worth mentioning that, if l is the vector of a line with
direction d [see Eq. (40)], then the vector H−1

0 ½l� is orthogo-
nal to d, namely
EQ-TARGET;temp:intralink-;e042;326;326

dTH−1
0 ½l� ¼ dTH−1

0 ½H½a� ×H0½d��
¼ H0½d�TðH½a� ×H0½d�Þ
¼ 0: (42)

4.3 Ideal Points and the Line at Infinity

In the Euclidean geometry, two parallel lines in the plane do
not intersect. However, in the projective geometry, two dif-
ferent lines always intersect at a point. Consider the parallel
lines given by the vectors in Eq. (36). Using Eq. (35), the
intersection point is
EQ-TARGET;temp:intralink-;e043;326;183

H−1½l × l̄� ¼ H−1½H½02� × l�
¼ H−1½ψ�; (43)

where

EQ-TARGET;temp:intralink-;e044;326;122ψ ¼ ½−l2 l1 0 �T (44)

is the point of intersection in homogeneous coordinates.
Note that H−1½ψ� ¼ ½−l2∕0; l1∕0� provides the insight that

(a) 
[p] 

y 

x 

z 

1 [p] 

p 

(b) 

y 

x 

z 

d 

l 

[ 1] 

[ 2] [ 2] 
[ 1] 

t 

 

l3+  

l3 

l 
- 

a 

Fig. 4 (a) The 2-D space represented by the projective plane (z ¼ 1).
(b) Parallel lines in the plane.

Optical Engineering 070801-5 July 2017 • Vol. 56(7)

Juarez-Salazar and Diaz-Ramirez: Operator-based homogeneous coordinates: application. . .



parallel lines intersecting at a point at infinity. As in the 1-D
case, the vector ψ represents ideal points, see Eq. (5).

The vector ψ is associated with the direction d of the
line l. This is verified by taking into account that H−1

0 ½l�
is orthogonal to d [Eq. (42)] as well as to H−1

0 ½ψ�
(H−1

0 ½ψ�TH−1
0 ½l� ¼ 0), then

EQ-TARGET;temp:intralink-;e045;63;683H−1
0 ½ψ� ¼ λd; (45)

where λ is some nonzero scalar.
All ideal points given by Eq. (44) are collinear. The vector

of such a line, known as the line at infinity, is

EQ-TARGET;temp:intralink-;e046;63;618l∞ ¼ H½02� ¼ ½ 0 0 1 �T: (46)

This can be easily verified by lT∞ψ ¼ 0 as required
by Eq. (32).

The ideal point ψ in Eq. (44) was obtained as the inter-
section of two parallel lines l and l̄. However, the intuition
suggests that the same result could be obtained by computing
the intersection of the line l and the line at infinity l∞. In fact,
we have that

EQ-TARGET;temp:intralink-;e047;63;510ψ ¼ l × l∞: (47)

Thus, using Eq. (45), the direction d of any line l is given by

EQ-TARGET;temp:intralink-;e048;63;468λd ¼ H−1
0 ½l × l∞�; (48)

where λ is a nonzero scale factor. For this reason, the line l∞
is interpreted as the set of directions of lines in the plane.

Similar to the 1-D case, homogeneous coordinates
provide a different form to identify points of the plane.
Consider the unit vector

EQ-TARGET;temp:intralink-;e049;63;381v ¼ ½ sin θ cos ϕ sin θ sin ϕ cos θ �T; (49)

where θ and ϕ are polar and azimuth angles, respectively.
Thus, the homogeneous coordinates for each point x ¼
½x1; x2�T on the plane are given by

EQ-TARGET;temp:intralink-;e050;63;316H½x� ¼ λv; (50)

where λ2 ¼ 1þ x21 þ x22. From Eq. (50), the following
relation holds

EQ-TARGET;temp:intralink-;e051;326;752x ¼ H−1½vðθ;ϕÞ�: (51)

The points of the plane at a finite distance from the origin
are given by vðθ;ϕÞ with θ ∈ ½0; π∕2Þ and ϕ ∈ ½−π; πÞ, i.e.,
the upper hemisphere of the unit sphere, see Fig. 5. The
points of the plane at infinity distance from the origin are
parameterized by θ ¼ π∕2 and ϕ ∈ ð−π∕2; π∕2�. These
points have the homogeneous coordinates

EQ-TARGET;temp:intralink-;e052;326;664v∞ ¼ ½ cos ϕ sin ϕ 0 �T; (52)

see Eq. (44). That is, the ideal points are represented by
the half equator of the unit sphere, see yellow line in Fig. 5.

4.4 Two-Dimensional Projection

Any plane in the 3-D space can be obtained as the plane
z ¼ 0 after a rotation Q ¼ ½q1; q2; q3� and a translation s.
Thus, the points represented by x ¼ ½x1; x2�T, becomes
EQ-TARGET;temp:intralink-;e053;326;550

p ¼ QH0½x� þ s

¼ Π2H½x�; (53)

where the matrix Π2 will be referred to as the reference plane
parameters and has the explicit form

EQ-TARGET;temp:intralink-;e054;326;478Π2 ¼ ½ q1 q2 s �: (54)

The cross product of the first two columns of Π2 and det Π2

provides the normal to the reference plane and its distance
from the origin, respectively.

The matrix Π2 is singular when r1, r2, and t are coplanar.
In this case, the origin 03 is a point of the transformed plane
(the distance of the reference plane from the origin is zero).
Otherwise, Π2 is a nonsingular.

Let p in Eq. (53) be the homogeneous coordinates of a
point α in the projective plane. Thus, the relation between
the points α and x is given by the 2-D projection PΠ2

,
namely
EQ-TARGET;temp:intralink-;e055;326;326

α ¼ H−1½p�
¼ H−1½Π2H½x��
¼ PΠ2

½x�: (55)

The projection PΠ2
½x� and its inverse PΠ−1

2
½α� are shown

in Fig. 6.

x 

y 

z 

p 

v( , ) l  

v ( ) 

[p] 

Fig. 5 Representation of points of the plane using homogeneous
coordinates v. The upper hemisphere represents points of the
plane at a finite distance from the origin, and the half of the equator
(yellow semicircle) represents points at infinity.

2  [ ] 2[x] 
–1 

x1

x2

1
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2 [x] 

x1

x2
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Fig. 6 The 2-D projection.
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4.5 Properties of the Two-Dimensional Projection

As shown in Fig. 6, the 2-D projection PΠ2
excludes several

geometrical properties; e.g., shape, angles, lengths, and ratio
of lengths. Fortunately, there are some geometrical properties
that are preserved. Particularly, we are interested in three of
them that are very useful in practice: namely straightness,
line–line intersection, and parallelism of the normal and
line at infinity vectors.

4.5.1 Straightness property

This property states that a 2-D projection transforms lines to
lines.12 This can be shown as follows. Consider a line with
vector l and points x, that is

EQ-TARGET;temp:intralink-;e056;63;6000 ¼ lTH½x�: (56)

Next, the points x are transformed to α by Eq. (55). Solving
Eq. (55) for x and substituting in Eq. (56), we obtain

EQ-TARGET;temp:intralink-;e057;63;5470 ¼ lTH½PΠ−1
2
½α�� ¼ lTΠ−1

2 H½α�
S½Π−1

2 H½α�� ; (57)

or

EQ-TARGET;temp:intralink-;e058;63;4900 ¼ mTH½α�; (58)

where

EQ-TARGET;temp:intralink-;e059;63;453m ¼ Π−T
2 l; (59)

with Π−T
2 being the abbreviation of ðΠ−1

2 ÞT or ðΠT
2 Þ−1. In

summary, the points x of a line l are transformed by PΠ2

to points α of a new line m.

4.5.2 Line–line intersection

Preservation of the line–line intersection by a 2-D projection
refers to the following. If

EQ-TARGET;temp:intralink-;e060;63;344x0 ¼ H−1½l1 × l2� (60)

is the point where the lines l1 and l2 intersect, then

EQ-TARGET;temp:intralink-;e061;63;301α0 ¼ PΠ2
½x0� (61)

is the point where intersect the lines

EQ-TARGET;temp:intralink-;e062;63;258m1 ¼ Π−T
2 l1 and m2 ¼ Π−T

2 l2: (62)

In fact, the lines m1 and m2 intersect at the point
EQ-TARGET;temp:intralink-;e063;326;741

α0 ¼ H−1½m1 ×m2�
¼ H−1½ðΠ−T

2 l1Þ × ðΠ−T
2 l2Þ�

¼ H−1½Π2ðl1 × l2Þ�; (63)

where the identity of the cross product

EQ-TARGET;temp:intralink-;e064;326;663ðMuÞ × ðMvÞ ¼ ðdet MÞM−Tðu × vÞ (64)

was applied. By solving Eq. (60) for l1 × l2 and substituting
in Eq. (63), we obtain
EQ-TARGET;temp:intralink-;e065;326;615

α0 ¼ H−1½S½l1 × l2�Π2H½x0��
¼ H−1½Π2H½x0��
¼ PΠ2

½x0�: (65)

4.5.3 Parallelism of the normal and line at infinity
vectors

The normal of the xy-plane and the vector l∞ of the line at
infinity are parallel. When the projection PΠ2

is applied,
the normal q3 of the reference plane (with parameters Π2)
and the new line at infinity m∞ still remain parallel;
i.e., m∞ ¼ λq3, λ ≠ 0. Actually, the reference plane has
the normal

EQ-TARGET;temp:intralink-;e066;326;447q3 ¼ q1 × q2; (66)

see Eq. (54), whereas the vector of the new line at infinity is
EQ-TARGET;temp:intralink-;e067;326;405

m∞ ¼ Π−T
2 l∞

¼ λðcof Π2Þl∞
¼ λ½ q2 × s −q1 × s q1 × q2 �l∞
¼ λq3; (67)

where λ ¼ 1∕ det Π2, and cofð·Þ denotes the cofactor matrix.
In the following section, the developed theoretical frame-

work is applied in a real problem.

5 Pinhole Camera Model
In practice, the imaging process is performed by a camera
lens device as shown in Fig. 7(a). This device produces

f 

f 

(b) (a) 

f 

f 
z 

x 
y 

x 
y 

(c) 

x 
y 

Fig. 7 (a) Illustration of a camera lens. (b) The imaging process modeled using a single thin lens. (c) A
pinhole camera. The planes z ¼ −f and z ¼ f are the actual and conjugate image planes, respectively.
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high quality images because of a complicated system of
lenses that minimizes aberration and distortion. However,
the imaging process can be modeled using a single thin
lens as shown in Fig. 7(b). Moreover, the imaging model
can be easily derived using the equivalent pinhole camera
as shown in Fig. 7(c).

In the pinhole camera, the origin of a coordinate system is
fixed at the pinhole and the z-axis is parallel to the optical
axis. The plane z ¼ −f, where f is the focal length, is the
actual image plane. Note that the image is inverted; therefore,
the x and y axes are reverted to describe the image as a mag-
nified version of the object. The inversion of the axes is
avoided using the conjugate image plane z ¼ f as shown
in Fig. 7(c).

5.1 Centered Pinhole Camera

A typical representation of a pinhole camera is shown in
Fig. 8. The coordinate system Ocxcyczc is known as the
camera reference frame. Let

EQ-TARGET;temp:intralink-;e068;63;538pc ¼ ½ xc yc zc �T (68)

be the coordinates of a point in the camera reference frame.
The point pc will be imaged in the plane zc ¼ f at the point

EQ-TARGET;temp:intralink-;e069;63;485β ¼ ½ βx βy �T; (69)

where βwill be referred to as the physical image coordinates.
The pinhole projection model relates the vectors pc and β by

EQ-TARGET;temp:intralink-;e070;63;431

2
4 βx
βy
f

3
5 ¼ f

zc

" xc
yc
zc

#
: (70)

Using homogeneous coordinates for the image point β,
Eq. (70) can be rewritten as
EQ-TARGET;temp:intralink-;e071;63;353

β ¼ H−1
f ½pc�

¼ H−1½Ξ−1
f pc�: (71)

The image formed in the sensor of the camera is sampled as
an array of pixels. Then, the physical coordinates β will be
transformed to the pixel coordinates

EQ-TARGET;temp:intralink-;e072;63;268μ ¼ ½ u v �T; (72)

which depend on the size of the pixel and skew (diagonal
distortion) as shown in Fig. 8. The sampling can be
described as

EQ-TARGET;temp:intralink-;e073;326;719

u ¼ ðβx þ τxÞ∕sx þ σβy;

v ¼ ðβy þ τyÞ∕sy; (73)

where sx and sy (with units of length) are the width and
height of the pixel, respectively, τ ¼ ½τx; τy�T is known
as the principal point and represents the point (from the
uv-reference frame) where the optical axis crosses the
image plane, and σ is the skew factor (σ ¼ 0 for most camera
sensors). Equation (73) can be written as

EQ-TARGET;temp:intralink-;e074;326;6012
4 u

v

1

3
5 ¼

2
64
1∕sx σ τx∕sx
0 1∕sy τy∕sy
0 0 1

3
75
2
64
βx

βy

1

3
75; (74)

or using a compact notation

EQ-TARGET;temp:intralink-;e075;326;527μ ¼ H−1½SH½β�� ¼ PS½β�; (75)

where S is the sampling matrix given as

EQ-TARGET;temp:intralink-;e076;326;481

S ¼

2
64
1∕sx σ τx∕sx
0 1∕sy τy∕sy
0 0 1

3
75: (76)

Substituting Eq. (71) into Eq. (75), we obtain the image μ
(in pixel coordinates) of the point pc as

EQ-TARGET;temp:intralink-;e077;326;396μ ¼ PS½H−1½Ξ−1
f pc�� ¼ H−1½SΞ−1

f pc� ¼ H−1½Kpc�;
(77)

where K ¼ SΞ−1
f is known as the matrix of intrinsic camera

parameters having the explicit form

EQ-TARGET;temp:intralink-;e078;326;324

K ¼

2
64
1∕sx σ τx∕fsx
0 1∕sy τy∕fsy
0 0 1∕f

3
75: (78)
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zc f 
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Fig. 8 The centered pinhole camera and sampling of the image
plane.
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Fig. 9 The noncentered pinhole camera.
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Since det K ¼ ðsxsyfÞ−1, the matrix K is nonsingular for
any experimental case.

Given a point μ (in pixel coordinates), the actual coordi-
nates Hf½β� of an image point (physical coordinates on the
image plane z ¼ f) can be obtained from Eq. (75) as

EQ-TARGET;temp:intralink-;e079;63;695

Hf½β� ¼ Hf½PS−1 ½μ��
¼ ΞfH½PS−1 ½μ��
¼ ΞfS−1H½μ�∕S½S−1H½μ��
¼ K−1H½μ�; (79)

where the equality S½S−1H½μ�� ¼ 1 was used.

5.2 Noncentered Pinhole Camera

Let us consider that the pinhole camera is at an arbitrary posi-
tion and orientation with respect to a world coordinate sys-
tem Oxyz as shown in Fig. 9. The position and orientation
of the camera are defined by the vector t and the rotation
matrix R, respectively. Let

EQ-TARGET;temp:intralink-;e080;63;517p ¼ ½ x y z �T (80)

be a point in the world coordinate system. Then, the point p
is seen from the camera reference frame as

EQ-TARGET;temp:intralink-;e081;63;464pc ¼ RTðp − tÞ ¼ LH½p�; (81)

where L is known as the matrix of extrinsic camera param-
eters having the explicit form

EQ-TARGET;temp:intralink-;e082;63;410L ¼ ½RT −RTt �: (82)

By substituting Eq. (81) into Eq. (77), the complete imaging
process by a noncentered pinhole camera is given as

EQ-TARGET;temp:intralink-;e083;63;357μ ¼ H−1½KLH½p�� ¼ H−1½CH½p��; (83)

where C ¼ KL is the matrix of the camera.

5.3 Homography Matrix

In general terms, Eq. (83) describes a transformation of
points p of the 3-D space to points of the 2-D one. A
very useful transformation is obtained when p represents
points of a plane in the 3-D space. In this case, Eq. (83)
is reduced to a transformation from the 2-D space to
itself.

Consider that p represents the points of a plane in the 3-D
space; mathematically, see Eq. (53)

EQ-TARGET;temp:intralink-;e084;63;199p ¼ ΠH½ρ�; (84)

where ρ ¼ ½ρx; ρy�T parameterizes the plane, Π ¼ ½q1; q2; s�
is the matrix of the plane, q1 and q2 are columns of the
rotation matrix Q ¼ ½q1; q2; q3�T , and s is a translation vec-
tor. Next, the points p are transformed to μ by Eq. (83) as

EQ-TARGET;temp:intralink-;e085;326;752

μ ¼ H−1½CH½ΠH½ρ���

¼ H−1
�
C

� Π
H½02�T

�
H½ρ�

�

¼ H−1½GH½ρ��
¼ PG½ρ�; (85)

where G is known as the homography matrix and has the
explicit form
EQ-TARGET;temp:intralink-;e086;326;641

G ¼ KL

� Π
H½02�

�
¼ KRT ½Π −tH½0�T �
¼ KRTΠ̄; (86)

where
EQ-TARGET;temp:intralink-;e087;326;551

Π̄ ¼ ½Π −tH½0�T �
¼ ½ q1 q2 s − t �: (87)

From Eqs. (79) and (85), a point ρ is imaged at the point with
actual image coordinates
EQ-TARGET;temp:intralink-;e088;326;485

Hf½β� ¼ K−1H½μ�
¼ K−1H½PG½ρ��
¼ K−1GH½ρ�∕λ
¼ RTΠ̄H½ρ�∕λ; (88)

where λ ¼ S½GH½ρ��.
The homography matrix is singular when the pinhole is

at a point of the reference plane. For any other case,
det G ¼ qT3 ðs − tÞ∕ðsxsyfÞ and Eq. (85) can be inverted as

EQ-TARGET;temp:intralink-;e089;326;357ρ ¼ PG−1 ½μ�: (89)

The homography matrix is very useful for many computer
vision tasks. In Appendix A, the direct linear transformation
method for homography estimation is described.

6 Perspective Correction for Document Scanning
A camera document scanning application performs several
image processing tasks, such as quadrilateral detection, per-
spective correction, resampling, and image enhancement. In
this section, the perspective correction task is addressed to
illustrate the application of the proposed approach.

6.1 Assumptions

In Appendix A, we show that the perspective of a flat object
can be easily corrected using the associated homography. For
this, at least four correspondences ðμk; ρkÞmust be provided.
However, for practical document scanning, the coordinates
ρk are unknown. Instead, it is assumed that the document
to be digitized is rectangular and the orthogonality and par-
allelism properties of its edges are exploited.

The estimation of the homography is greatly simplified by
assuming a centered pinhole camera with known intrinsic
parameters; e.g., by a previous camera calibration, see
Appendix B. Thus, we only require to estimate the reference
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plane parameters Π, i.e., the rotation matrix Q and the
translation vector s, see Eq. (84).

6.2 Estimation of the Reference Plane Parameters

Consider a coordinate system in the reference plane with ori-
gin at the center of the document to be scanned as shown in
Fig. 10(a). The x- and y-axes of this coordinate system are
parallel with the upper/lower and left/right sides of the paper,
respectively. The corners of the document to be digitized
have coordinates given by the vectors

EQ-TARGET;temp:intralink-;e090;63;448ρk; k ¼ 1; · · · ; 4: (90)

In this configuration, the vectors ρk are symmetric about the
y-axis; that is

EQ-TARGET;temp:intralink-;e091;63;395ρ2 ¼ Tρ1; ρ4 ¼ Tρ3; (91)

where

EQ-TARGET;temp:intralink-;e092;63;353T ¼
�
−1 0

0 1

�
: (92)

When the document is imaged by the camera, the original
rectangle is transformed to a quadrilateral because of the
perspective distortion. The corners of the imaged document
have coordinates given by the vectors

EQ-TARGET;temp:intralink-;e093;63;269μk; k ¼ 1; · · · ; 4; (93)

as shown in Fig. 10(b). The vectors μk and ρk are related by
Eqs. (85) and (89); however, the vectors ρk and the homog-
raphy G are unavailable. Only the vectors μk are available,
which are easily obtained from the image by pointing the
vertexes of the imaged document.

The points μk are used to compute the following lines,
see Fig. 10(b),
EQ-TARGET;temp:intralink-;e094;63;161

m1 ¼ H½μ3� ×H½μ1�; m4 ¼ H½μ1� ×H½μ2�;
m2 ¼ H½μ2� ×H½μ4�; m5 ¼ H½μ4� ×H½μ1�;
m3 ¼ H½μ3� ×H½μ4�; m6 ¼ H½μ2� ×H½μ3�: (94)

Next, with the lines mk, the following three intersection
points are computed

EQ-TARGET;temp:intralink-;e095;326;563

μ0 ¼ H−1½m1 ×m2�;
μa ¼ H−1½m3 ×m4�;
μb ¼ H−1½m5 ×m6�: (95)

Since the intrinsic camera parameters are assumed to be
known, the actual image coordinates of the points μi can
be obtained by Eq. (79) as

EQ-TARGET;temp:intralink-;e096;326;472Hf½βi� ¼ K−1H½μi�; (96)

with i ¼ a; b; 0;1; 2;3; 4.

6.2.1 Normal vector

Note that the points μa and μb are the projections of the ideal
points

EQ-TARGET;temp:intralink-;e097;326;380H½ρa� ¼ ½ 1 0 0 �T; H½ρb� ¼ ½ 0 1 0 �T; (97)

respectively. Thus, the line m∞ (in physical coordinates on
the image plane z ¼ f) is parallel to the normal q3, see
Eq. (67). That is,

EQ-TARGET;temp:intralink-;e098;326;315n ¼ Hf½βa� ×Hf½βb� ¼ q3∕λ; (98)

for some λ. Thus, the normal of the reference plane is
obtained as the normalization of the vector n, namely

EQ-TARGET;temp:intralink-;e099;326;261q3 ¼ n∕knk ¼ KT ½ðm3 ×m4Þ × ðm5 ×m6Þ�
kKT ½ðm3 ×m4Þ × ðm5 ×m6Þ�k

: (99)

6.2.2 Translation vector

The translation vector s is obtained by taking into account
that PG preserves the line–line intersection. Thus, from
Eq. (65) we have μ0 ¼ PG½ρ0�with ρ0 ¼ 02. Therefore, from
Eq. (88) we have

EQ-TARGET;temp:intralink-;e100;326;145Hf½β0� ¼ Π̄H½02�∕ξ ¼ s∕ξ; (100)

where ξ is a scalar to be determined. For this, note that the
vectors

EQ-TARGET;temp:intralink-;e101;326;91pk ¼ ζkHf½βk�; k ¼ 1; · · · ; 4; (101)
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Fig. 10 (a) Depict of the rectangular paper to be digitized. (b) The quadrilateral obtained by pinhole im-
aging of a rectangular paper. (c) The remaining rotation after perspective correction of the quadrilateral
shown in (b).
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are points of the reference for values ζk and ξ such that
the equation of the plane q3ðpk − sÞ ¼ 0 is satisfied. This
leads to

EQ-TARGET;temp:intralink-;e102;63;719ζk ¼ ξ
qT3Hf½β0�
qT3Hf½βk�

: (102)

Since the points ρk are on the unit circumference, see
Fig. 10(a), then kρkk ¼ kpk − sk ¼ 1, which leads to

EQ-TARGET;temp:intralink-;e103;63;651ξk ¼
���� qT3Hf½β0�
qT3Hf½βk�

Hf½βk� −Hf½β0�
����−1; (103)

where the subindex k in ξ emphasizes the fact that a different
value could be obtained for each Hf½βk� due to inaccuracies
of μk. Therefore, the value ξ is computed as

EQ-TARGET;temp:intralink-;e104;63;571ξ ¼ meanfξ1; ξ2; ξ3; ξ4g: (104)

The result is used in Eq. (100), and the translation of the
reference plane is now available.

6.2.3 Euler angles

The reference plane is fully characterized by six degrees of
freedom (DOF), namely position (three coordinates) and
orientation (three angles). The vectors q3 and s provide
five DOFs. Specifically, the vector s provides three DOFs
that fix the position while q3 provides two DOFs defining
the orientation by the azimuth and polar angles given,
respectively, by

EQ-TARGET;temp:intralink-;e105;63;414 tan ϕ ¼ q23∕q13; cos θ ¼ q33; (105)

where ½q13; q23; q33�T ¼ q3 is the third column of the rotation
matrix Q. The remaining angle γ (the angle around the
normal q3) can be obtained as follows.

From Eqs. (84) and (53), we have

EQ-TARGET;temp:intralink-;e106;63;339pk ¼ QH0½ρk� þ s; (106)

where the matrix Q is defined as the Euler sequence

EQ-TARGET;temp:intralink-;e107;326;741Q ¼ QzðϕÞQyðθÞQzðγÞ; (107)

withQz andQy being the rotation matrices around the z- and
y-axes, respectively. Thus, using Eq. (101), the estimated
vector s, and the angles θ and ϕ, we compute the (perspective
corrected) points

EQ-TARGET;temp:intralink-;e108;326;666δk ¼ H−1
0 ½QT

y ðθÞQzðϕÞTðpk − sÞ� ¼
�
δxk
δyk

�
; (108)

with k ¼ 1; · · · ; 4, see Fig. 10(c). The vectors δk and ρk are
related by

EQ-TARGET;temp:intralink-;e109;326;599ρk ¼ Q̄T
z ðγÞδk; (109)

where

EQ-TARGET;temp:intralink-;e110;326;552Q̄T
z ðγÞ ¼

�
cos γ sin γ
− sin γ cos γ

�
: (110)

The vectors ρk are unavailable, but we use their symmetry
properties given in Eq. (91) to obtain

EQ-TARGET;temp:intralink-;e111;326;486Q̄T
z ðγÞδ2 ¼ TQ̄T

z ðγÞδ1; Q̄T
z ðγÞδ4 ¼ TQ̄T

z ðγÞδ3: (111)

The product Q̄T
z ðγÞδk can be written as

EQ-TARGET;temp:intralink-;e112;326;440R̄Tδk ¼ B½δk�Γ; (112)

where Γ ¼ ½sin γ; cos γ�T and

EQ-TARGET;temp:intralink-;e113;326;393B½δk� ¼
�

δyk δxk
−δxk δyk

�
: (113)

Thus, Eq. (111) can be rewritten as

EQ-TARGET;temp:intralink-;e114;326;337BΓ ¼ 04; (114)

Fig. 11 (a) An input image with a rectangular object in scene. (b) The corners of the rectangle are marked
by yellow circles. (c) Corrected image. (d) Zoom of (c) highlighting the region of interest.

Optical Engineering 070801-11 July 2017 • Vol. 56(7)

Juarez-Salazar and Diaz-Ramirez: Operator-based homogeneous coordinates: application. . .



where

EQ-TARGET;temp:intralink-;e115;63;741B ¼
�
B½δ2� − TB½δ1�
B½δ4� − TB½δ3�

�
: (115)

The nontrivial solution of Eq. (114) for Γ is obtained as the
right-singular vector corresponding to the smallest singular
value of B. Finally, the angle γ is obtained from Γ by

EQ-TARGET;temp:intralink-;e116;63;662 tan γ ¼ H−1½Γ�: (116)

The estimated parameters are used to create the matrix Π.
Then, the required homography G is obtained by Eq. (86)
(with t ¼ 03 and R ¼ I because of the centered pinhole cam-
era configuration). Finally, the perspective distortion of the
image is corrected by displaying the intensity of each pixel of
the image at the point ρ computed by Eq. (89).

6.3 Illustrative Example

The functionality of the presented algorithm is illustrated by
the following example. The camera described in Appendix B
and the estimated intrinsic parameters K given in Eq. (156)
are used here.

Figure 11(a) shows the image of a rectangular object
acquired by the camera. Then, the four corners of the quadri-
lateral are marked from the image as shown by the yellow
circles in Fig. 11(b). The points μ0, μa, and μb are indicated
by the red circles in Fig. 11(b). It is worth mentioning that
μa, or μb, or both could be points at infinity. Even in these
cases, the presented methodology is valid.

The information estimated with the four corners are
EQ-TARGET;temp:intralink-;e117;63;405

s ¼ ½−0.2289 0.0561 2.9236 �T;
ϕ ¼ 0.6776;

θ ¼ 0.9879;

γ ¼ 2.3041: (117)

With these parameters, the matrix of the reference plane is
EQ-TARGET;temp:intralink-;e118;63;310

Π ¼

2
64
−0.7528 0.1010 −0.2289
0.3478 −0.7779 0.0561

0.5588 0.6202 2.9236

3
75: (118)

Thus, the resulting homography is
EQ-TARGET;temp:intralink-;e119;63;234

G ¼

2
64
−2.0219 0.2429 −0.7272
0.9237 −2.0786 0.1298

0.5588 0.6202 2.9236

3
75: (119)

All points μ of the image are transformed to points ρ of the
reference plane by Eq. (89). Next, the pixels of the image are
displayed at the points ρ as shown in Fig. 11(c).

With the correction of perspective, the yellow circles in
Fig. 11(b) become the green ones in Fig. 11(c). The region
of interest is the rectangle with corners marked by green
circles in Fig. 11(c). Finally, a zoom of the region of interest
is shown in Fig. 11(d).

7 Conclusions
An operator-based approach for homogeneous coordinates
was proposed. Several basic geometrical concepts and prop-
erties of the operators were investigated. With the proposed
approach, the pinhole camera model and a simple camera
calibration method were described. The study of this work
was motivated by developing a perspective correction
method useful for a camera document scanning application.
Several experimental results illustrate the analyzed theoreti-
cal aspects. The proposed approach could be a good starting
point to introduce inexperienced students in the scientific
discipline of computer vision.

Appendix A: Estimation of the Homography
Matrix
In this appendix, we illustrate the method known as direct
linear transformation for homography matrix estimation.
This method is very useful for illustration purposes because
of its simplicity. However, the highest accuracy and robust-
ness are reached with other advanced methods available in
the literature.9,13

Let G be the homography matrix defined in Eq. (86).
Consider that the matrix G is row partitioned as follows:
EQ-TARGET;temp:intralink-;e120;326;482

G ¼

2
64
g11 g12 g13
g21 g22 g23
g31 g32 g33

3
75 ¼

2
64
ḡT1
ḡT2
ḡT3

3
75; (120)

where
EQ-TARGET;temp:intralink-;e121;326;407

ḡT1 ¼ ½ g11 g12 g13 �;
ḡT2 ¼ ½ g21 g22 g23 �;
ḡT3 ¼ ½ g31 g32 g33 �: (121)

Equation (85), which relates points of the reference and
image planes, can be rewritten as
EQ-TARGET;temp:intralink-;e122;326;319

μ ¼
�
u

v

�
¼ 1

ḡT3H½ρ�

"
ḡT1H½ρ�
ḡT2H½ρ�

#
; (122)

or
EQ-TARGET;temp:intralink-;e123;326;257"
uḡT3H½ρ�
vḡT3H½ρ�

#
¼

"
ḡT1H½ρ�
ḡT2H½ρ�

#
: (123)

Furthermore, Eq. (123) can be written in matrix form as

EQ-TARGET;temp:intralink-;e124;326;192Aḡ ¼ 02; (124)

where
EQ-TARGET;temp:intralink-;e125;326;150

A ¼
�
H½ρ�T 0T3 −uH½ρ�T
0T3 H½ρ�T −vH½ρ�T

�
;

ḡ ¼ ½ ḡT1 ḡT2 ḡT3 �T: (125)

Equation (124) relates a single point ρ on the reference
plane with the corresponding point μ on the image plane.
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If n pairs ðρk;μkÞ, with k ¼ 1;2; · · · n, are available,
the n corresponding equations of the form Eq. (124) can
be written as

EQ-TARGET;temp:intralink-;e126;63;456Aḡ ¼ 02n; (126)

where
EQ-TARGET;temp:intralink-;e127;63;414

A ¼ ½AT
1 AT

2 · · · AT
n �T;

Ak ¼
�
H½ρk�T 0T3 −ukH½ρk�T
0T3 H½ρk�T −vkH½ρk�T

�
: (127)

The nontrivial solution ḡ of Eq. (126) can be obtained
using the constraint kḡk ¼ 1. Thus, by using the singular
value decomposition of A, the solution for ḡ is the right-
singular vector corresponding to the smallest singular value
of A, see Appendix C of Ref. 14.

The application of this method is illustrated as follows.
Consider the image shown in Fig. 12(a). A letter size
paper printed with the Melencolia I by Albrecht Dürer is
in the scene. Using the aspect ratio 1∶1.2941 of the letter
paper, the coordinates of the corners are fixed to

EQ-TARGET;temp:intralink-;e128;63;244

ρ1 ¼ ½1; 1.2941�T; ρ3 ¼ −ρ1;

ρ2 ¼ ½−1; 1.2941�T; ρ4 ¼ −ρ2: (128)

The coordinates of the imaged corners are

EQ-TARGET;temp:intralink-;e129;63;183

μ1 ¼ ½−0.2858; 0.5661�T;
μ2 ¼ ½0.3826;−0.0938�T;
μ3 ¼ ½−0.2884;−0.5403�T;
μ4 ¼ ½−0.8479;−0.1135�T; (129)

see yellow circles in Fig. 12(a). With these four pairs
ðρk;μkÞ, we obtain the homography

EQ-TARGET;temp:intralink-;e130;326;489

G ¼

2
64
−0.2437 0.2292 −0.2442
0.2258 0.1870 −0.0888
−0.0524 −0.0989 0.8497

3
75: (130)

The homography G fully defines a pinhole imaging proc-
ess. Thus, it can be inversed to obtain an undistorted view of
the reference plane from its perspective distorted image.
Specifically, using Eq. (89) all points μ of the image are
transformed to points ρ of the reference plane. Then, the pix-
els of the image are displayed at the points ρ as shown in
Fig. 12(b). Note that corners of the paper in the corrected
image are at the coordinates specified by Eq. (128).

The least number of point correspondences for two-
dimensional homography estimation is four. However, the
accuracy of the estimation is improved when more than
four point correspondences are provided. For this reason,
checkerboard patterns15 and gratings16,17 are useful target
objects. In this appendix, the corner points of the imaged
rectangle where obtained manually from the image.
However, the corner points can be obtained automatically
using checkerboard patterns or gratings along with grid
detection18 or phase demodulation,19 respectively.

Appendix B: Camera Parameters from
Homographies
The homography matrix involves both intrinsic K and
extrinsic L camera parameters as well as the reference plane
parameters Π. In this appendix, we show how to obtain
the intrinsic and extrinsic camera parameters from several
homographies.

B.1 Intrinsic Camera Parameters
Consider that the reference plane is the xy-plane of the world
coordinate system; i.e., s ¼ 03 and

Fig. 12 (a) Image of 1168 × 2080 pixel capturing a scene with the Melencolia I printed on a letter size
paper. (b) Perspective corrected Image.
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EQ-TARGET;temp:intralink-;e131;63;752

Q̄ ¼

2
64
1 0

0 1

0 0

3
75: (131)

In this case, the homography G, defined in Eq. (86), is
reduced to

EQ-TARGET;temp:intralink-;e132;63;676G ¼ K½ r̄1 r̄2 −RTt �; (132)

where r̄T1 and r̄T2 are the first and second rows of the rotation
matrix R, respectively. Consider that the matrix G is column
partitioned as follows:

EQ-TARGET;temp:intralink-;e133;63;613G ¼

2
64 g11 g12 g13
g21 g22 g23
g31 g32 g33

3
75 ¼ ½ g1 g2 g3 �; (133)

where
EQ-TARGET;temp:intralink-;e134;63;542

g1 ¼

2
64
g11
g21
g31

3
75; g2 ¼

2
64
g12
g22
g32

3
75; g3 ¼

2
64
g13
g23
g33

3
75: (134)

Thus, Eq. (132) can be written as

EQ-TARGET;temp:intralink-;e135;63;473½ r̄1 r̄2 −RTt � ¼ K−1½ g1 g2 g3 �: (135)

Since r̄1 and r̄2 are orthonormal vectors (r̄1 and r̄2 are
rows of a rotation matrix), we have the following two
constraints r̄T1 r̄2 ¼ 0 and kr̄1k2 ¼ kr̄2k2, which can be
written as

EQ-TARGET;temp:intralink-;e136;63;396gT1Wg2 ¼ 0; gT1Wg1 ¼ gT2Wg2; (136)

where the symmetric matrix W is defined as
EQ-TARGET;temp:intralink-;e137;63;355

W ¼ K−TK−1 ¼

2
64
w11 w12 w13

w12 w22 w23

w13 w23 w33

3
75: (137)

The bilinear form gTi Wgj can be rewritten as

EQ-TARGET;temp:intralink-;e138;63;285gTi Wgj ¼ Vij½G�w; (138)

where
EQ-TARGET;temp:intralink-;e139;63;242

Vij½G� ¼

2
6666666664

g1ig1j
g2ig2j
g3ig3j

g2ig1j þ g1ig2j

g3ig1j þ g1ig3j
g3ig2j þ g2ig3j

3
7777777775

T

; (139)

and

EQ-TARGET;temp:intralink-;e140;63;124w ¼ ½w11 w22 w33 w12 w13 w23 �T: (140)

Then, the constraints given by Eq. (136) become

EQ-TARGET;temp:intralink-;e141;63;86V½G�w ¼ 02; (141)

where V½G� is the following 2 × 6 matrix:

EQ-TARGET;temp:intralink-;e142;326;741V½G� ¼
�

V12½G�
V11½G� − V22½G�

�
: (142)

A nontrivial solution of Eq. (141) for w can be obtained
using several homographiesGk, k ¼ 1;2; · · · ; m. For this, we
compute the homographies of different images where the
position and orientation of the reference plane (or the cam-
era, or both) are varying (in an unknown manner) while the
intrinsic camera parameters remain constant. Thus, we solve
the new matrix equation

EQ-TARGET;temp:intralink-;e143;326;620Vw ¼ 02m; (143)

where

EQ-TARGET;temp:intralink-;e144;326;578V ¼ ½V½G1�T V½G2�T · · · V½Gm�T �T: (144)

In general, at least three homographies (m ¼ 3) are
required. However, two homographies are sufficient assum-
ing zero-skew.

Equation (143) can be solved for w using the singular
value decomposition method, see Appendix C of Ref. 14.
Since the obtained solution, labeled as w̃, is unique up to
scale, the associated matrix W̃ is related to W by

EQ-TARGET;temp:intralink-;e145;326;474W̃ ¼ λW ¼ λK−TK−1; (145)

where λ ≠ 0 is an unknown constant. With the estimated
matrix ~W, the unknown scalar λ and the entries kij of the
intrinsic parameter matrix
EQ-TARGET;temp:intralink-;e146;326;409

K ¼

2
64
k11 k12 k13
0 k22 k23
0 0 1

3
75; (146)

are given in closed form as
EQ-TARGET;temp:intralink-;e147;326;335

λ ¼ ðdet W̃Þ∕d;
k11 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
λ∕w̃11

p
;

k22 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λw̃11∕d

p
;

k12 ¼ −w̃12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ∕w̃11d

p
;

k13 ¼ ðw̃12w̃23 − w̃22w̃13Þ∕d;
k23 ¼ ðw̃12w̃13 − w̃11w̃23Þ∕d; (147)

where d ¼ ~w11 ~w22 − ~w2
12.

It is worth mentioning that the intrinsic camera parame-
ters (f, sx, sy, τx, τy, and σ) cannot be obtained using only the
matrix K. Fortunately, the matrix K is sufficient for many
computer vision tasks. For the case where the intrinsic cam-
era parameters are required explicitly, we can assume that
the skew and size of the pixel are known (e.g., sx, sy, and
σ are consulted in the datasheet of the camera sensor).
Thus, the estimation of the remaining intrinsic parameters
is a linear problem with the least-squares solution

EQ-TARGET;temp:intralink-;e148;326;104f ¼ sxsy
sxk22 þ syk11 þ sxsyσk12

s2x þ s2y þ s2xs2yσ2
; (148)
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EQ-TARGET;temp:intralink-;e149;63;584τx ¼ sxk13; (149)

EQ-TARGET;temp:intralink-;e150;63;561τy ¼ syk23: (150)

B.2 Extrinsic Camera Parameters
Once the matrix K is available, the rotation matrix R and the
translation vector t can be estimated for each provided
homography as follows. First, we compute the estimate
R̃T of the matrix RT as

EQ-TARGET;temp:intralink-;e151;63;465R̃T ¼ ½ h1 h2 h1 × h2 �; (151)

where using Eq. (135), the vectors h1 and h2 are given as

EQ-TARGET;temp:intralink-;e152;63;422h1 ¼ K−1g1; h2 ¼ K−1g2: (152)

Then, the rotation matrix R is obtained from ~R ensuring
the orthogonality condition of rotation matrices. For this, the
singular value decomposition R̃ ¼ UΣVT is obtained and the
required rotation matrix is determined as

EQ-TARGET;temp:intralink-;e153;63;346R ¼ UVT: (153)

Finally, the translation vector t is computed as

EQ-TARGET;temp:intralink-;e154;63;304t ¼ −RK−1g3: (154)

B.3 Illustrative Example
As an example, we describe a simple experiment to obtain
the intrinsic parameters of a camera. A camera with a pixel
size of 6 μm (square pixel), resolution of 752 × 480 pixel,
and imaging lens with focal length of 6 mm was used.
The 3 × 3 checkerboard pattern shown in Fig. 13(a) was
printed on a letter paper. Then, 15 images of the printed
pattern lying on the reference plane were captured from
different unknown viewpoints, see Figs. 13(b)–13(i).

We use the coordinates of the corners shown in Fig. 13(a)
as the known points ρk on the reference plane. The corre-
sponding points μk in the image plane were obtained by
marking the corners of the checkerboard pattern in
the image. Then, with the pairs ðρk;μkÞ, an homography
matrix Gk was computed for each acquired image. With
these homographies, the matrix V defined in Eq. (144) was
created. Then, Eq. (143) was solved for w, the resulting
matrix W̃ is

EQ-TARGET;temp:intralink-;e155;326;584

W̃ ¼

2
64
−0.1389 0.0005 −0.0058
0.0005 −0.1378 −0.0008
−0.0058 −0.0008 −0.9806

3
75: (155)

From this, the intrinsic parameter matrix K was recovered
as

EQ-TARGET;temp:intralink-;e156;326;509K ¼
2
4 2.6563 −0.0103 −0.0419

0 2.6674 −0.0059
0 0 1

3
5: (156)

For validation purposes, we estimate the focal length
using the known information sx ¼ sy ¼ 6 μm, and σ ¼ 0.
The reader should note that the quantities sx and sy are
defined in this experiment as

EQ-TARGET;temp:intralink-;e157;326;410sx ¼ sy ¼
752

2
6 × 10−3 mm (157)

because the points μ were obtained in a coordinate system
with a unit of length equal to a half of the image width,
see Figs. 13(b)–13(i). From the matrix K in Eq. (156), the
focal length was estimated using Eq. (148). The result is
f ¼ 6.0032 mm, which is very close to the nominal focal
length (6 mm) of the employed camera lens.
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