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1 Introduction
Optical systems that do not have axial symmetry can provide
useful and unique solutions to certain imaging problems.
However, the complexity of the optical design task grows
as the degrees of symmetry are reduced and lost: there are
more aberration terms to control, and achieving a sharp
image over a wide field-of-view (FOV) at fast optical speeds
becomes challenging. Plane-symmetric optical systems re-
present a large family of practical nonaxially symmetric sys-
tems that are simple enough to be easily described and thus
are well understood. Design methodologies and aberration
theory of plane-symmetric optical systems have been dis-
cussed in the literature, and various interesting solutions have
been reported.1–4

The little discussed in the literature technique of confocal
systems is effective for the design of nonaxially symmetric
optics. A confocal nonaxially symmetric system is con-
structed in such a way that there is sharp image along a
given ray [called the optical axis ray (OAR)] surface after
surface. It is possible to show that such a system can have
a reduced number of field aberrations, and that the system
will behave closer to an axially symmetric system.5,6

In this paper, we review a methodology for the design of
nonaxially symmetric optical systems. We utilize an aspheri-
cal/free-form surface constructed by superposition of a conic
expressed in a coordinate system that is centered on the off-
axis surface segment rather than centered on the axis of
symmetry, and an XY polynomial. The conic part of the
aspherical/free-form surface describes the base shape that is
required to achieve stigmatic imaging surface after surface
along the OAR. The XY polynomial adds a more refined
shape description to the surface sag and provides effective
degrees of freedom for high-order aberration correction.
This aspheric/free-form surface profile is able to best model
the ideal reflective surface and to allow one to intelligently
approach the optical design. Examples of two- and three-mir-
ror unobscured wide FOV reflective systems are provided to
show how the methods and corresponding aspheric/free-form

surface are applied. We also demonstrate how the method can
be extended to design a monolithic free-form objective.7

2 Aberrations of Plane-Symmetric Optical Systems
In this section, we review the aberration properties of a
plane-symmetric optical system. The well-known concept of
the axially symmetric wavefront aberration function Wð ~H; ~ρÞ
is extended to describe the imaginary of plane-symmetric
systems. The wavefront aberration function Wð ~H; ~ρ;~iÞ of
a plane-symmetric optical system gives the geometrical
wavefront deformation at the exit pupil as a function of
the normalized field ~H, aperture ~ρ, and symmetry unit~i vec-
tors. The plane of symmetry contains a ray, called the OAR
that defines the center of the FOV and the center of the
pupils. The unit symmetry vector ~i defines the direction of
the plane of symmetry. For optical systems that are com-
posed from spherical or slightly aspherical surfaces, the
wavefront aberration function is expanded into polynomial
series of dot products of the field, aperture, and symmetry
unit vectors, and can be written as
EQ-TARGET;temp:intralink-;e001;326;301

Wð ~H; ~ρ;~iÞ ¼
X

k;m;n;p;q

W 2kþnþp;
2mþnþq;
n;p;q

ð ~H · ~HÞkð~ρ · ~ρÞmð ~H · ~ρÞn

× ð ~H · ~iÞpð~ρ · ~iÞq; (1)

where each aberration coefficient W2kþnþp;2mþnþq;n;p;q rep-
resents the amplitude of basic wavefront deformation forms
defined by the integers k, m, n, p, and q. The sum of these
integers represents a certain order of approximation.

The aberration terms to the fourth order of approximation
are summarized in Table 1. These terms consist of the well-
understood axially-symmetric primary aberrations and an
additional set of aberrations that have double-plane and plane
symmetry. The magnitude of the aberration coefficients can
be calculated from a first-order ray trace and the system
structure parameters.1

The aberration formulas provide insight into the aberra-
tion dependence as a function of the system parameters.
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Moreover, the aberration division into subgroups according
to symmetry characteristics reveals the design strategy and
indicates the effective degrees of freedom during the optimi-
zation process.

An important case to highlight is a plane-symmetric opti-
cal system constructed with confocal surfaces such as imag-
ing along the OAR is stigmatic surface after surface. This
type of systems has a reduced number of aberrations and
potentially can provide better imaging. To satisfy the require-
ment in the case of reflective systems, surfaces must be off-
axis segments of conics. Due to the system construction,
there will be no field-independent aberration terms: the sur-
face contributions to spherical aberration (W04000), uniform
coma (W03001), and uniform astigmatism (W02002) are all
exactly zero. In addition, anamorphic distortion (W11011) and
quadratic distortion II (W21110) also nullify, and the surface

contribution to intrinsic anamorphism becomes unity. More-
over, linear astigmatism (W12101) and field tilt (W12010) of the
system vanish simultaneously and can be corrected by adjust-
ing the tilt of mirrors. It follows that except for the remaining
quadratic distortion I and to the fourth order of approximation,
the system behaves as an axially symmetric system.

3 Surface Description
In this section, we present an aspherical/free-form surface in
close form that can be used to design plane-symmetric opti-
cal systems. We have shown that concatenation of stigmatic
components is useful to obtain a starting point for designing
a system. A standard tilted and/or decentered axially symmet-
ric conic surface of Eq. (2) provides solution to the problem

EQ-TARGET;temp:intralink-;e002;326;597zðrÞ ¼ cr2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1þ kÞc2r2

p ; (2)

where c is the curvature of the surface, k is the conic constant,
and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. However, when one wishes to design a

plane-symmetric optical system, it is desirable to have a con-
venient expression for the surface in a coordinate system that
is centered on the off-axis surface segment rather that centered
on the axis of symmetry. Some advantages of using this sur-
face description are that the actual surface can be precisely
specified, that the system geometry can be easily established
and optimized in lens design software, and that additional
aspheric terms can be added to provide effective degrees of
freedom to further improve the system.

The derivation of the analytical expression of the conic as
viewed from a coordinate system that is tangent to the sur-
face at a general point away from the axis of symmetry is
reviewed below.8,9 Original coordinates ðy; zÞ and new coor-
dinates ðy 0; z 0Þ are shown in Fig. 1. Without loss of general-
ity, the new coordinate origin is chosen on the y axis; thus, Y0

is the distance from the rotation axis to the new coordinate
center.

A general expression of an axially symmetric conic sur-
face of Eq. (2) is rewritten as

EQ-TARGET;temp:intralink-;e003;326;319zðrÞ ¼ 1

ð1þ kÞ fR − ½R2 − ð1þ kÞ · r2�1∕2g; (3)

where R ¼ 1∕c is the radius of curvature of the surface.
From Eq. (3), it follows that

EQ-TARGET;temp:intralink-;e004;326;253 tanðφ0Þ ¼
∂z
∂yx¼0;y¼Y0

¼ Y0

½R2 − ð1þ kÞ · Y2
0�1∕2

; (4)

EQ-TARGET;temp:intralink-;e005;326;210Z0 ¼ zð0; Y0Þ ¼
1

ð1þ kÞ fR − ½R2 − ð1þ kÞ · Y2
0�1∕2g; (5)

where φ0 is the angle of the coordinate system rotation.

Table 1 Aberrations of a plane-symmetric optical system. The aber-
ration terms are arranged in groups according to symmetry
characteristics.

First group

W 00000 Piston

Second group

W 01001ð~i · ~ρÞ Field displacement

W 10010ð~i · ~HÞ Linear piston

W 02000ð~ρ · ~ρÞ Defocus

W 11100ð~H · ~ρÞ Magnification

W 20000ð~H · ~HÞ Quadratic piston

Third group

W 02002ð~i · ~ρÞ2 Uniform astigmatism

W 11011ð~i · ~HÞð~i · ~ρÞ Anamorphic distortion

W 20020ð~i · ~HÞ2 Quadratic piston

W 03001ð~i · ~ρÞð~ρ · ~ρÞ Uniform coma

W 12101ð~i · ~ρÞð~H · ~ρÞ Linear astigmatism

W 12010ð~i · ~HÞð~ρ · ~ρÞ Field tilt

W 21001ð~i · ~ρÞð~H · ~HÞ Quadratic distortion I

W 21110ð~i · ~HÞð~H · ~ρÞ Quadratic distortion II

W 30010ð~i · ~HÞð~H · ~HÞ Cubic piston

W 04000ð~ρ · ~ρÞ2 Spherical aberration

W 13100ð~H · ~ρÞð~ρ · ~ρÞ Linear coma

W 22200ð ~H · ~ρÞ2 Quadratic astigmatism

W 22000ð~H · ~HÞð~ρ · ~ρÞ Field curvature

W 31100ð~H · ~HÞð~H · ~ρÞ Cubic distortion

W 40000ð ~H · ~HÞ2 Quadratic piston

Fig. 1 The geometry defining global and local coordinates of the off-
axis conic segment.
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The rotation of coordinates is now performed according to

EQ-TARGET;temp:intralink-;e006;63;741x ¼ x 0; (6)

EQ-TARGET;temp:intralink-;e007;63;711y ¼ y 0 cosðφ0Þ − z 0 · sinðφ0Þ þ Y0; (7)

EQ-TARGET;temp:intralink-;e008;63;686z ¼ y 0 · sinðφ0Þ þ z 0 · cosðφ0Þ þ Z0; (8)

EQ-TARGET;temp:intralink-;e009;63;661x 0 ¼ x; (9)

EQ-TARGET;temp:intralink-;e010;63;636y 0 ¼ ðy − Y0Þ · cosðφ0Þ þ ðz 0 − Z0Þ · sinðφ0Þ; (10)

EQ-TARGET;temp:intralink-;e011;63;611z 0 ¼ −ðy − Y0Þ · sinðφ0Þ þ ðz 0 − Z0Þ · cosðφ0Þ: (11)

For compactness, the dimensionless variables

EQ-TARGET;temp:intralink-;e012;63;574u ¼ x 0

R
; v ¼ y 0

R
; w ¼ z 0

R
; ε ¼ Y0

R
; (12)

and the quantities
EQ-TARGET;temp:intralink-;e013;63;521

s ≡ sinðφ0Þ ¼
Y0

½R2 − kY2
0�1∕2

;

c ≡ cosðφ0Þ ¼
�
R2 − ðkþ 1ÞY2

0

R2 − kY2
0

�
1∕2

;

L ≡ kþ 1;

W0 ≡ Z0∕R (13)

are introduced. Equations (3), (6), (7), (12), and (13) are now
substituted into Eq. (8)

EQ-TARGET;temp:intralink-;e014;63;396

1

L
ð1 − Lð½vc − wsþ ε�2 þ u2�1∕2ÞÞ ¼ vsþ wcþW0:

(14)

After some algebraic manipulations, Eq. (14) is reduced
to a quadratic equation as in

EQ-TARGET;temp:intralink-;e015;63;319w2 þ 2wðhþ jvÞ − ðfv2 þ gu2Þ ¼ 0: (15)

The solution for wðu; vÞ is
EQ-TARGET;temp:intralink-;e016;63;277wðu; vÞ ¼ −ðhþ jvÞ � ½ðhþ jvÞ2 þ fv2 þ gu2�1∕2; (16)

where f ≡ ðs∕εÞ2g, g ≡ −1∕ðLc2 þ s2Þ, h ≡ ðε∕sÞg and
j ≡ −ðL − 1Þscg.

This off-axis conic surface is now used as a base surface
to construct an aspherical/free-form surface. The aspherical/
free-form surface zfðrÞ is constructed by adding a plane-
symmetric XY polynomial to the base surface as

EQ-TARGET;temp:intralink-;e017;63;179zfðrÞ ¼ wðrÞ þ A1x2 þ A2y2 þ A3x2yþ A4y3 þ A5x4

þ A6x2y2 þ A7y4: : : ;

(17)

where wðrÞ is the sag of the base off-axis conic surface, and
A 0s are the aspheric polynomial coefficients. The XY poly-
nomial in Eq. (17) is centered at the origin of the off-axis
conic segment and thus provides effective degrees of free-
dom for the correction of off-axis aberrations. This very

ad hoc surface allows for optimum design or to refine the
design performance of plane-symmetric refractive systems.

4 Design Method
In this section, we outline a systematic method to the design
of plane-symmetric reflective systems that utilizes the
aspheric/free-form surface defined in Sec. 3.

1. A well-corrected axially symmetric system provides
an initial estimate for the first-order parameters and
serves as a good starting point for a nonaxially symmet-
ric design. All surfaces are axially symmetric conics
and imaging is stigmatic along the optical axis surface
after surface.

2. Axially symmetric conic surfaces are converted into
aspheric/free-form surfaces. A plane-symmetric form
is generated by tilting the system elements in a plane
and adding the off-axis conic decenter parameter Y0

(see Fig. 1) into optimization. Optimization variables
are the surface tilts and separations, and parameter
Y0. Structure constrains are assigned, and the system
is reoptimized to obtain stigmatic imaging along the
OAR.

3. Several points in the FOVof the system are added, and
the tilt of the last mirror is adjusted to correct linear
astigmatism.

4. At this point, the base conic surface is frozen, and only
aspheric polynomial coefficients are used by the opti-
mizer as degrees of freedom to correct off-axis aber-
rations. The coefficients are released as variables and as
the optimizer proceeds, more coefficients are released.

Usually, there are several ways to set up a decentered or
tilted element in lens design software. We choose a way that
is simple to understand, allows to easily construct a system
with confocal surfaces, and permits a minimum number of
tilt or decenter parameters.

In software, when we tilt and/or decenter a surface, we are
actually tilting and/or decentering the local coordinate sys-
tem in which the surface is defined. Each aspheric/free-form
surface is sandwiched between two coordinate breaks with
the same tilt angle. The surface is tilted, and the coordinate
system is titled again to follow the beam before translating to
the next surface. As a result, the OAR is aligned with the
surface vertex of each aspherical/free-form surface which
allows to effectively control high-order aberrations and to
achieve balance performance over the entire field by intro-
ducing small asphericities as effective degrees of freedom in
step 4. In addition by sandwiching the free-form surface
between two coordinate breaks, the OAR becomes aligned
with the z-axis of the second coordinate system and the OAR
passes through the center of the image plane. This scheme
also helps to cleanly define the geometry of a plane symmet-
ric system.

The surface zfðrÞ in Eq. (17) was programmed as a user-
defined surface in Zemax OpticStudio optical design soft-
ware and was successfully applied to design several plane-
symmetric optical systems. In the following sections, we will
present design examples of two- and three-mirror unob-
scured telescopes. Finally, we will extend our design method
to refractive optical systems and show an example of a
monolithic free-form objective.
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5 Two-Mirror Unobscured Telescope
In this section, we show a step-by-step design process of a
two-mirror unobscured Schwarzschild-type telescope using
the systematic method outlined in Sec. 3. We start with an
axially symmetric system shown in Fig. 2(a). In this design,
curvatures and conic constants of the mirrors are chosen such
that imaging on axis is stigmatic surface after surface. The
primary mirror is parabolic, and the secondary mirror is
hyperbolic. The system operates at f∕4. The optical path dif-
ference (OPD) plots for 0 and þ∕ − 2 deg fields are shown
in Fig. 2(b). The off-axis performance is considerably
degraded by coma, field curvature, and astigmatism.

A plane-symmetric form can be generated by simply tilt-
ing and decentering the system elements in a plane. How-
ever, if surfaces are defined as standard axially symmetric
conic surfaces, only a small off-axis segment of the actual
surface is used to bend rays as shown in Fig. 3(a). Notice
that in this case aspherical polynomial defined with respect
to the surface vertex does not provide effective degrees of
freedom for further optimization as high-order polynomial
terms are required to produce small aspheric departures at

the surface off-axis segment. On the other hand, optical sys-
tems, which contain lens elements that use higher order
aspheric terms, are subjected to produce oscillation on the
ray behavior and are susceptible to creating imaging artifacts
when they are slightly misaligned.

Instead, axially symmetric conic surfaces are converted
into aspheric/free-form surfaces zfðrÞ. This surface descrip-
tion simplifies the design by allowing one to set the offset
parameter Y0 for a given mirror so that stigmatic imaging
along the OAR is obtained. The optimization variables are
the surface tilts (angle of incidence of the OAR) and surface
separations along the OAR, and the parameter Y0. The image
plane is constrained to be perpendicular to the OAR, and as
the system changes it is reoptimized to correct aberrations on
axis. The layout is shown in Fig. 3(b). The OPD plots of this
plane-symmetric system are shown in Fig. 4. Notice that due
to the system construction, there is no field-independent
aberration terms. Once the tilt of the secondary mirror is
adjusted to correct linear astigmatism and field tilt, the sys-
tem performs close to the corresponding axially symmetric
system.

Fig. 2 The starting design of a two-mirror unobscured Schwarzschild-type telescope. (a) Layout and
(b) OPD plots (plot scale is 2 waves at 0.550 μm). In this design, imaging on-axis is stigmatic surface
after surface.

Fig. 3 The elements are tilted and/or decentered to generate an unobscured optical system. Mirror sur-
faces are defined with (a) standard axially symmetric conic surfaces and (b) aspheric/free-form surfaces
zf ðr Þ.
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Off-axis aberrations are now corrected by adding aspheric
polynomial coefficients to the optimization. System geom-
etry, surface curvatures, and conic constants are locked, and
aspheric coefficients are released as variables. The FOV is
gradually increased, and more coefficients are released as
the optimizer proceeds. The final system, presented in Fig. 5,
covers an FOVof 6 × 4 degrees at f∕4. The OPD plots and
full-field spot diagram are shown in Fig. 6. Uniform image
quality and close to diffraction limited performance have
been achieved over the entire FOV. For reference, two-mirror

unobscured telescopes designed with standard conic and
aspheric surfaces provide diffraction limited performance
over an FOV of only few degrees.3

6 Three-Mirror Unobscured Telescope
In this section, we present an f∕2 three-mirror unobscured
telescope design that closely resembles the nonuniform
rational-basis spline (NURBS) free-form design reported by
Chrisp and show the performance improvement made by
using aspheric surfaces zfðrÞ.10 The design parameters are
given in Table 2.

The design procedure is similar to one used in the pre-
vious section. The initial system is constructed with confocal
surfaces, as shown in Fig. 7(a). Mirror sizes, separations, and
incidence angles were chosen to closely match the NURBS
design by Chrisp. Notice that linear astigmatism and field tilt
are removed by adjusting the tilt of the tertiary mirror, as
shown in Fig. 7(b).

Next, mirror curvatures, conic constants, and surface sep-
arations are removed from the optimization, and up to
eighth-order plane-symmetric polynomial coefficients are
added as variables to correct off-axis aberrations. Although
no constraints on distortion were mentioned by Chrisp, in the
current design the distortion is limited to <3%. The system
layout reproduced from the paper by Chrisp and our final
system layout are presented side by side in Fig. 8. The
OPD plots and spot diagrams of our system are given in
Fig. 9. The performance is close to being diffraction-limited
over the entire FOV.

In his paper, Chrisp compared the performance of the
design with NURBS surfaces to designs that use conven-
tional tilted and/or decentered rotational aspheres, and XY
polynomials. The RMS spot size over the field for different
designs is shown in Fig. 10. Chrisp reported the average RMS
spot size over the field to be 61 μm for the conventional

Fig. 4 OPD plots of the unobscured telescope (plot scale is two waves at 0.550 μm). The plane-sym-
metric system designed with confocal surfaces performs close to the corresponding axially symmetric
system.

Fig. 5 Layout of the final two-mirror unobscured Schwarzschild-type
telescope design. Aspheric polynomial terms are used to correct off-
axis aberrations.
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aspheric design, 36 μm for the XY polynomial design, and
14 μm for the NURBS design. In the current design, the
average RMS spot is 8.5 μm, which is about 40% better
comparing to the NURBS design.

Although the design presented by Chrisp shows excellent
performance, the surface representation with NURBS has a
number of disadvantages. The major optical design programs
are not capable of optimizing NURBS grid-type surfaces in
imaging systems. For this reason, the optimization of the
design by Chrisp was accomplished with an in-house code.
Moreover, the NURBS design represents a “brute force”/
“number crunching” solution, whereas the aspheric surface

Fig. 6 Imaging performance of the final two-mirror unobscured Schwarzschild-type telescope design.
(a) OPD plots (plot scale is 1 wave at 0.550 μm) and (b) full-field spot diagram at 0.550 μm. Close
to diffraction limited performance over an FOV of 6 × 4 deg was achieved.

Table 2 Design requirements for the three-mirror unobscured
system.

Parameter Requirement

FOV 10 × 9 deg

Focal length 35.7 mm

Focal ratio f∕2

Fig. 7 The starting design of a three-mirror telescope is constructed with confocal surfaces. (a) Layout
and (b) OPD plots (the plot scale is 10 waves at 3 μm). In this design, imaging on-axis is stigmatic surface
after surface. Tilt of the tertiary mirror is adjusted to correct field tilt and linear astigmatism.
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profile of the mirrors zfðrÞ is clearly able to best model the
required ideal surface and to allow one to intelligently
approach the optical design.

7 Monolithic Free-form Objective
So far, we have discussed the design of reflective plane-sym-
metric optical systems. In this section, we extend our design
method to refractive optical systems and show an additional
free-form surface constructed by superposition of a Cartesian
oval surface and polynomial.

The Cartesian oval is an optical surface that separates
two homogeneous refracting media and produces a perfect
point image of a point object. In the special case of a mirror
surface in which the index of refraction of object and image
space media have the same magnitude but the opposite sign,

the Cartesian oval solutions are conic surfaces. Other well-
known solutions are a sphere for the case of aplanatic and
concentric conjugate points or conic surface with the conic
constant equal to the minus square of the index of refraction
for the case of having one conjugate point at infinity. How-
ever, a general sag equation of the Cartesian oval is compli-
cated. The solution for the explicit sag of the Cartesian oval
has been previously discussed by other authors. Moreover,
an alternate iterative method for the sag of the Cartesian
oval has also been provided.11

This iterative method solves the defining optical path
length equation for the Cartesian oval for any ray from the
object point O to the image point O 0, as shown in Fig. 11

EQ-TARGET;temp:intralink-;e018;326;609

OPLp − OPLaxis ¼
�
n1 ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s1 þ ScðrÞ�2 þ r2

q
þ n2

·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s2 − ScðrÞ�2 þ r2

q �
− fn1 · s1 þ n2 · s2g ¼ 0; (18)

where ScðrÞ is the sag of the Cartesian oval, n1 and n2 are the
indices of refraction in object and image spaces, and s1 and
s2 are the object and image distances from the surface vertex,
respectively.

The Cartesian oval has the property of perfectly imaging
an object point into an image point with any numerical aper-
ture. However, the imaging performance of the Cartesian
oval degrades rapidly for off-axis field positions. Similarly to
the construction of the aspheric/free-form surface zfðrÞ, the
aspherical surface zcðrÞ is now constructed by adding a pol-
ynomial to the base surface ScðrÞ as

EQ-TARGET;temp:intralink-;e019;326;415zcðrÞ ¼ ScðrÞ þ A1r4 þ A2r6 þ A2r8 þ : : : ; (19)

where the A 0s represent the aspheric polynomial coefficients.
A combination of surfaces zfðrÞ and zcðrÞ can be used to
design certain plane-symmetric systems.

Fig. 8 Layout of the three-mirror telescope. (a) The design with
NURBS free-form surfaces reported by Chrisp; (b) the current design
with aspherical/free-form surfaces zf ðr Þ. In the current design, up to
eighth-order plane-symmetric polynomials are used to correct off-axis
aberrations.

Fig. 9 Imaging performance of the final three-mirror telescope. (a) OPD plots (the plot scale is 1 wave at
3 μm) and (b) spot diagrams at 3 μm. Close to diffraction limited performance over an FOV of 10 × 9 deg
was achieved.
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As an example, we present a monolithic free-form objec-
tive that closely resembles the monolithic free-form objective
design discussed by Kiontke.12 The design covers a vertical
FOVof about 25 deg at f∕1.4 and operates in the long-wave
infrared region. The monolithic objective is made of germa-
nium. The initial system is constructed with confocal surfa-
ces and comprises a free-form surface zcðrÞ to couple light
from the object into the material, two free-form/aspherical
surfaces zfðrÞ to bend light in the material, and additional
free-form surface zcðrÞ to out-couple light toward the detec-
tor, as shown in Fig. 12.

Next, the Cartesian oval parameters (s1 and s2), mirror
curvatures, conic constants, and separations are removed

from the optimization, and polynomial coefficients are
released as variables to balance off-axis aberrations. The sys-
tem layout reproduced from the paper by Kiontke and our
final system layout are presented side by side in Fig. 13.
The OPD plots and spot diagrams of our system are given in
Fig. 14. Excellent, balanced performance over an FOV of
37 × 25 deg has been achieved.

The design reported by Kiontke utilizes three axially sym-
metric aspheric surfaces and one free-form surface. The free-
form surface is described as a superposition of Zernike poly-
nomials and is used to compensate plane-symmetric aberra-
tions. These aspheric and free-form surface descriptions are
widely accepted. However, selecting a starting point for the
design, satisfying all geometrical constraints, and compen-
sating for aberrations induced by breaking up the rotational
symmetry of the optical system impose challenges for the
optical design. In the current design, the system geometry
has already been established during the initial design step.
By construction, the initial system has a reduced number
of field aberrations, and only small aspheric departures to
the surface sag are required to effectively correct off-axis
aberrations.

8 Conclusion
To summarize, we review the methodology for the design
of plane-symmetric optical systems and demonstrate an
aspheric/free-form surface profile zfðrÞ constructed by
superposition of a conic segment and polynomial. We also

Fig. 10 The RMS Spot Size over the field of the three-mirror system. (a) The design with conventional
aspheric surfaces reported by Chrisp, (b) the design with XY polynomial surfaces reported by Chrisp,
(c) the design with NURBS free-form surfaces reported by Chrisp, and (d) the current design with aspheri-
cal surfaces zf ðr Þ.

Fig. 11 Geometrical variables used to define the Cartesian oval sur-
face. All rays from the object pointO to the image pointO 0 have equal
optical path length.
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Fig. 12 The starting design of a monolithic free-form objective is constructed with confocal surfaces.
(a) Layout and (b) OPD plots (the plot scale is 5 waves at 9 μm). Combination of free-form surfaces
zf ðr Þ and zcðr Þ allows to achieve stigmatic imaging on-axis surface after surface.

Fig. 13 Layout of the monolithic objective design. (a) The design with aspheric and Zernike free-form
surfaces reported by Kiontke and (b) the current design with aspherical/free-form surfaces zf ðr Þ and
zcðr Þ. In the current design, aspheric polynomials are used to correct off-axis aberrations.

Fig. 14 Imaging performance of the final monolithic objective design. (a) OPD plots (the plot scale is 1
wave at 9 μm) and (b) spot diagrams at 9 μm. Excellent, balanced performance over an FOV of 37 ×
25 deg was achieved.
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show an aspheric surface profile zcðrÞ constructed by super-
position of a Cartesian oval and polynomial.

The surfaces zfðrÞ and zcðrÞ are useful for designing
plane-symmetric systems, where the imaging is stigmatic
surface after surface along the OAR. Such systems have a
reduced number of field aberrations and behave closer to
an axially symmetric system. Moreover, these surfaces pro-
vide additional degrees of freedom to balance aberration for
the off-axis field positions and allow one to compensate for
aberrations induced by breaking up the rotational symmetry
of the system.

A systematic method is shown that provides a practical
and effective means for establishing a starting design point
and allows one to design relatively fast wide FOV plane-
symmetric systems. We found that this specific method
and corresponding aspheric/free-form surface significantly
simplify the optical design task. The method has been suc-
cessfully applied to design two- and three-mirror unobscured
wide FOV reflective systems, and a monolithic free-form
objective. Excellent performance over a large FOV has been
achieved. The method can be extended to systems with sur-
face tilts in two directions.

The surfaces zfðrÞ and zcðrÞ allow for optimum design or
to refine the design performance of plane-symmetric optical
systems by enabling a design with equivalent performance
but a faster focal ratio or larger FOV than a design with con-
vention surfaces.

The free-form surfaces demonstrated in this paper are not
trivial to manufacture and test. However, recent technologi-
cal improvements have allowed for production of similar
free-form components. For example, additional axes of
machine tool control and advancements in postprocessing of
components have extended diamond-turning manufacturing
capabilities.10,12
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