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Abstract. Many optical systems are used for specific tasks such as classification. Of these
systems, the majority are designed to maximize image quality for human observers.
However, machine learning classification algorithms do not require the same data representation
used by humans. We investigate the compressive optical systems optimized for a specific
machine sensing task. Two compressive optical architectures are examined: an array of prisms
and neutral density filters where each prism and neutral density filter pair realizes one datum
from an optimized compressive sensing matrix, and another architecture using conventional
optics to image the aperture onto the detector, a prism array to divide the aperture, and a pixelated
attenuation mask in the intermediate image plane. We discuss the design, simulation, and trade-
offs of these systems built for compressed classification of the Modified National Institute of
Standards and Technology dataset. Both architectures achieve classification accuracies within
3% of the optimized sensing matrix for compression ranging from 98.85% to 99.87%. The per-
formance of the systems with 98.85% compression were between an F∕2 and F∕4 imaging sys-
tem in the presence of noise. © The Authors. Published by SPIE under a Creative Commons Attribution
4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.OE.59.5.051404]
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1 Introduction

Classification of images is an active area of research for fields such as self-driving cars,1,2 facial
recognition,3 medical imaging,4,5 and remote sensing.6,7 High-resolution data optimized for
human observers is commonly passed into a machine learning algorithm that processes the data
and returns a classification decision. Many of the images will never be seen by a person because
the classification is the desired product and the volume of the data is large. High resolution
images increase the volume of the data and can be unnecessary for the machine learning algo-
rithms which reduce the dimensionality of the data as part of the processing. Compressive
sensing implements some of this compression in the optical hardware, thereby reducing the size,
weight, and power of the measurement system and reducing the bandwidth required for trans-
mission of the data. In our past work, it was shown that optimizing a sensing matrix using a
neural network to maximize classification accuracy instead of minimizing information loss ena-
bles better performance of a classification task than traditional compressed sensing methods.8

In this work we demonstrate two optical architectures to realize optimized compressive sens-
ing matrices and expand upon past work.9 The first architecture achieves compressive measure-
ments through the use of an array of prisms and neutral density filters in a nonimaging design.
Each prism and filter pair enables the realization of one nonzero element within an optimized
sensing matrix. The second architecture utilizes a more conventional approach, with a less
complex prism array dividing the aperture into channels which are imaged onto an intermediate
image plane. The sensing matrix weighting in the second architecture was achieved using
a digital micromirror device (DMD) in the intermediate image plane. These two architectures
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represent different approaches to realizing the same optimized sensing matrix. The positive and
negative attributes of these approaches will be discussed throughout the work.

Figure 1 shows a high-level overview of realizing a sensing matrix as an optical component.
The classification task chosen for this paper was classifying the handwritten digits of the
Modified National Institute of Standards and Technology (MNIST) dataset. The generation
of task-specific compressive sensing matrices was established previously8 and is discussed
briefly in Sec. 2. Section 2 discusses the physical parameters of the system and sampling object
space. Sections 2.1 and 2.2 discuss the creation of the optical components. Section 3.1 discusses
the optical simulation of the system response. Section 3.2 discusses the radiometric properties of
the compressive sensing systems as compared to imaging systems. Section 3.3 combines the
optical simulations and radiometric model with a noise model to compare the compressive sens-
ing systems to imaging systems. Section 4 presents the performance of the holistic optical device
and algorithmic classifiers. The positive and negative attributes of each sensing architecture are
discussed in Sec. 5. Finally, the conclusions are discussed in Sec. 6.

1.1 Background

Research in compressive sensing has shown that images can be reconstructed from datasets
sampled below the Shannon–Nyquist sampling limit.10 The compression is achieved by trans-
forming the data into a sparse basis, most commonly using the discrete cosine transform, and
sampling with random Gaussian compression matrix, which is computationally easy to create
and minimizes the loss of information for natural scenes.11 Optimized sparsifying transforms and
compression matrices have been explored to minimize the loss caused by the sensing matrix.12–15

Being able to reconstruct images from a compressed measurement dataset has been demon-
strated in simulation of multiple architectures16 and experiments such as the Rice University
single-pixel compressive imager.17,18

It has been shown that if the compression follows the restricted isometry property (RIP),
which is a common optimization metric for compressive imaging systems, then directly

Fig. 1 For task-specific compressive classification, a sensing matrix is optimized to minimize
the dimensionality of the measurement while maximizing the classification accuracy. If it is con-
strained to be non-negative, the sensing matrix becomes a weighted (transmission) mapping of
the rows (input angles) to the columns (detectors). An optical component can be created to realize
the weighted mapping. Then simulation or measurements of the optical components are used
to create system response matrices that represent each detector’s sensitivity to input angles.
The performance of the system is determined by how well a machine learning classifier can
classify scenes compressed using the system response matrix.
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classifying compressed data does not reduce classification accuracy.19 Even for compression
ratios large enough to break the RIP, classifiers have been developed to classify the data.
Convolutional neural network classifiers have been applied to MNIST images compressed using
random Gaussian projections. The classification accuracies were greater or equal to 58.94% for
compression ratios less than or equal to 98.98%.20 Classification of compressed data has been
shown to maintain high classification accuracies across a wide range of datasets and compression
techniques.21

Removing the requirement to reconstruct an image separates compressive classification from
compressive imaging. The requirements of the sensing matrix also change for compressive clas-
sification. Compression that maximizes task-specific information and removes information not
relevant to the task can improve the performance of detection or localization.22 This concept
has been demonstrated for systems using sequential measurements on a single detector and
a changing spatial light modulator or parallel measurements using a lenslet array and fixed
masks.23 The improved performance is because the dimensionality of the space is the number
of measurements, and adding dimensions that do not differentiate the classes increases the com-
putational cost24 and can reduce classification performance.25 The compression matrix needs to
be optimized to maximize the classification accuracy, but for compressive sensing, the sensing
matrix also has to be optimized to be realizable with optical hardware. Negative values are not
directly realizable because the irradiance on a detector is inherently positive. In addition, the
number of elements in the matrix sets the complexity of the optical design. We developed sens-
ing matrices optimized using neural networks to maximize classification accuracy of the MNIST
dataset and constrained to be non-negative and sparse.8

In this work we present a comparison between a DMD architecture and a prism array archi-
tecture that directly realize a compressed, task-specific sensing matrix. The behavior of both
architectures is simulated using nonsequential ray tracing to consider factors such as stray light.
The ray trace simulation is combined with radiometric models of the systems to allow for the
comparisons of noise between the compressive classification systems and traditional imaging.
High classification accuracies are demonstrated for the simulated systems at extremely high
compression ratios.

2 Optical Designs

We developed two optical architectures to realize optimized sensing matrices, as established by
Birch et al.8 for the MNIST task. These optical designs highly compress the data from the
784 pixels in the images to between one and nine measurements. The small number of detector
elements reduces the constraints on physical placement, detector colocation, and pixel size.

Both the images of the MNIST dataset and the sensing matrix are mathematical constructs
which have to be translated to physical parameters to create an optical system. The sensing
matrix can be considered as a mapping of brightness in object space to detector values in image
space. Each row of the sensing matrix is one object space location, and the column determines
the detector. For a non-negative sensing matrix, the whole matrix can be constrained to be
between zero and one by dividing by the maximum value in the matrix. Weights of this nor-
malized sensing matrix correspond to the transmission from each input angle. There are 28 by
28 input angles because the images in the MNIST dataset are 28 by 28 pixels.

The sensing matrix was created using a neural network optimization. The first layer of the
neural network was the compression matrix, enabling the neural network to learn the form of the
compression matrix concurrently with learning a classifier to maximize the classification accu-
racy. The compression matrix was constrained to be non-negative so that the weights could be
realized using transmission of an optical component. Basis pursuit26 was used to sparsify the
sensing matrices to decrease the complexity of the optical components. The final layer of the
neural network was a Softmax classifier.

The design problem was inherently underdefined because the images in the MNIST dataset
do not have physical properties such as size or radiant exitance. To make the problem tractable,
we defined the source and detector geometry. We set the distance to the scene as infinite;
therefore, the light from each pixel was a collimated source or a plane wave. With the object
at infinity, the size was defined in angular space. We assumed a half field of view (HFOV) of
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5 deg, corresponding to a fairly narrow field of view system. The size of the detectors was set to
be 100 by 100 μm, which is much larger than the pixels of a consumer camera. The small number
of separated detectors allowed for the larger size.

2.1 Prism Array Architecture

The sensing matrix maps values in object space to measurements in image space. Lenses cannot
directly realize this mapping because lenses have a one-to-one mapping from input angle to
output location, while each column of the sensing matrix has multiple separated nonzero values.
Mapping multiple input angles to a single detector encourages the use of an array of elements.
A prism is an element that maps an input angle to an output angle. If the position of the prism and
detector are known, a prism can be used as an element that maps an input angle to an output
location. The transmission of the prism corresponds to the weighting of the sensing matrix. In
this paper, we discuss a process to design a prism array to realize an arbitrary sensing matrix.
Figure 2 shows the physical dimensions assigned to the system to make the underdefined prob-
lem of realizing mathematical constructs tenable. Figure 3 shows an overview of the processing
workflow to convert a sensing matrix into a physical component.

Wd= 100 µm

dd
= 3 mm

zd = 9 mm

zscene = ∞
HFOV = 5 deg

W
p= 200 μm

Scene Prism array Detectors

dp
= 3 mm

Fig. 2 The dimensions of the prism array. The diagram shows a nine-detector example.

Sensing matrix

Position prisms

xp

yp

Optimize prism angle

Input angle Prism angle

( xp , yp )

Detector
( xdet , ydet )

( θx , θy ) ( αx , αy ) zdet 

Create physical model

Fig. 3 The prism array was created as a physical realization of the sensing matrix. First, each
nonzero entry from the sensing matrix was assigned to a physical location. Then the angles
of each prism were optimized to map the input angle, determined by the location in the sensing
matrix, to the detector position. A model was created from the prism geometry to allow for sim-
ulation of the optical system.
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The positions of the detectors were set before the prism positions because the prisms were
clustered around the detector to which they contributed. The clusters of prisms avoided having
lines of prisms with similar angles, which could cause angle cross talk, as shown in Fig. 4(a).
The separation between the detectors, and the distance between the prism array and the detector
determined the stray light between the prism clusters. This channel cross talk, as shown in
Fig. 4(b), could be decreased by widening the separation between the detectors; however, a larger
separation increased the total size of the component.

Decreasing the distance between the prism array and the detector decreased the required
separation of the detectors, but increased the angle between the prisms and the detector.
For this work, the separation between the detectors was set to 3 mm. The distance between the
prism array and the detector was set to 9 mm.

With the detector positions set, each nonzero element in the sensing matrix was assigned a
position on a grid centered on the corresponding detector. The grid spacing was determined by
the size of the prisms. The size of the prism determined if the detector was underfilled or over-
filled over the range of angles accepted by each prism. For this design, the prism size was set to
200 by 200 μm which overfills the detector for the designed field of view of each prism. The
large prisms also increased the power on the detector at the expense of blurring the system
response, as shown in Fig. 4(c). The height of the prisms was set so that the lowest point of
the prisms was touching the substrate.

The position of the prisms relative to the detector was used by a sequential ray trace program
to optimize the angle of each prism. The refractive index of the prism material was assumed to be
1.5 for all wavelengths. The physical parameters of the prism array were used to create a physical
model in a nonsequential ray tracing program where each prism was modeled as a separate
rectangular solid. The weighting of the sensing matrix was implemented with coatings on the
tilted surface of each prism. Transmissions were set to the weight of the normalized sensing
matrix, and the reflectance was set to a uniform 6%. The coating was an approximation of
an absorptive neutral density filters where the reflection would be due to the glass filter interface,
and the attenuation would be due to absorption inside the filter. It was not feasible to implement
the transmissions with floating point precision, so the transmissions were uniformly binned into
128 values between 0 and 1.

2.2 Digital Micromirror Device Architecture

The prism array architecture requires many elements with small feature sizes and sharp edges
which is not feasible to fabricate using traditional methods. An alternative architecture using a
DMD and less complex prism array enabled the use of commercial off-the-shelf optical elements
and a simple custom optical component. The DMD architecture presented in this work takes

(a) (b) (c)

Fig. 4 The considerations when designing a compressive classification system are different from
the traditional imaging systems. The error cases come from angles being mapped incorrectly onto
the detectors. (a) Angle cross talk was caused by scattering or spurious reflections. (b) Channel
cross talk was caused when the prisms from one channel contributed light to the detector of
an adjacent channel. (c) Blurring was caused by a detector accepting a larger angular field of
view than was designed for.
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measurements simultaneously with parallel channels as opposed to the sequential measurements
made by other architectures such as the Rice University single-pixel compressive sensor.27

To make parallel measurements required a channel for each detector which was spatially
resolved at the DMD plane, but uniform irradiance at the detector plane. The spatial resolved
and separated channels allowed for the sensing matrix weighting to be realized by varying the
duty cycle of the DMD pixels. The angular information had to be recombined into uniform
irradiance at the detector to avoid preferential sensitivity to some angles.

We achieved spatially resolved channels on the DMD plane using an objective lens to image
the scene onto the DMD. The uniform irradiance on the detector plane was achieved by using a
relay lens to image the aperture onto the detector, as shown in Fig. 5. The aperture was imaged
onto the detector because the irradiance in the aperture is approximately uniform. The stop was
located at the front focal point of the objective lens making the system telecentric,28 allowing
the distance between the DMD and the relay lens to be changed without any change of
magnification.

The separate channels were formed using a prism array to divide the aperture. The angle of
the prism set the separation between the channels in the intermediate image plane. Only one
prism was required for each detector, and the size of the prisms was larger than the prism
array architecture, allowing them to be fabricated as separate components using polishing
techniques.

The parameters were optimized using paraxial optics as a proof of concept for the system,
but each component was chosen to be possible to implement with commercial off-the-shelf
components. The first component set was the DMD, because the size of the DMD sets the
requirements of the remaining elements in the system. As a starting point, the design was created
around the Texas Instruments® DLP® LightCrafter™ 6500, which is a commercially available
component with a large active area of 14.52 by 8.16 mm. There are 1920 by 1080 micromirrors
across the active area. Therefore, the resolution of the DMD is much higher than the 28 by
28 pixels required for each channel. The channels on the DMD were arranged in a 3 by 3 grid,
so the maximum size of each channel at the DMD plane was 2.72 by 2.72 mm. The light incident
on the objective lens was collimated and imaged onto the DMD one focal length behind the
objective lens. Therefore, the width of each channel at the DMD was

EQ-TARGET;temp:intralink-;e001;116;139wchannel ¼ 2 tanðHFOVÞfobjective; (1)

where HFOV is the half field of view and fobjective is the focal length of the objective lens. Using
the 5-deg HFOV design constraint required the objective focal length to be shorter than 13.0 mm
to avoid overfilling the DMD. The short focal length was not practical because the lens needed to

(a)

(b)

(c)

Fig. 5 (a) The DMD architecture uses a prism array to divide the stop. The object is imaged onto
the DMD and the stop is imaged onto the detector. (b) Both the channels and the fields are sep-
arated at the DMD. (c) The fields are combined to be overlapping at the detector, but the channels
are separated.
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be far enough away from the DMD that the reflection would not clip on the mounting hardware
for the lens. In addition, the size of the aperture imaged onto the detector plane was set by the
ratio of the objective focal length to the relay focal length, and it was not reasonable to make
the focal length of the relay lens significantly shorter than 13 mm.

A Keplerian telescope was added to the front of the system to maintain the 5-deg HFOV in
object space and decrease the HFOV received by the objective lens. An HFOV magnification of
4 was chosen, so the HFOV received by the objective lens was 1.25 deg. With the reduced
HFOV, the objective focal length needed to be less than 52.1 mm. Setting the focal length
to 50 mm allowed for many off-the-shelf solutions and reduced the size of the channels at the
DMD plane. The small unused region around each channel reduced the likelihood of channel
cross talk. With the focal length of the objective set, the angle of the prism was optimized to
−5.85 deg for a 2.58-mm separation between the channels at the DMD. The separation smaller
than 2.72 mm increased the unused pixels around the outside edge.

The focal length of the relay lens was set to 5 mm to give a 10 times magnification of the
detector area. The magnification increased the effective detector area at the aperture and there-
fore increased the throughput. The focal length of the relay lens had to be balanced against the
speed of the lens. The entrance pupil of the lens needed to be larger than the beam diameter, and
the focal length needed to be longer than the entrance pupil diameter for additional off-the-shelf
options. In addition, increasing the effective area of the detector required a larger prism size or
the channels would underfill the detector. Increasing the prism size also increased the beam
diameter.

For this work, the prisms were set to 4 by 4 mm which required a relay lens entrance pupil
diameter of 11.7 mm, requiring an F∕0.43 lens which is not feasible. However, if the size of the
prisms was reduced to 1 by 1 mm (the effective size of the detector at the prism plane), the beam
diameter at the relay lens was 3.59 mm requiring an F∕1.39 lens, which was a commercially
off-the-shelf option.

The beam for each channel was narrowest at the DMD. After that, each beam expanded but
the centers of the beams crossed. The centers of the beams converging creates a point where the
total beam diameter was narrowest. The location and diameter of this beam waist were deter-
mined by a combination of the field of view, prism angle, and objective focal length. In this
design, the relay lens was located farther from the DMD than the minimum beam diameter
because the minimum beam diameter was close to the objective lens, as shown in Fig. 5(b).
The close proximity of the two lenses would not allow for mounting hardware.

The relay lens imaged the aperture onto the detectors. The detectors for this design were
located in a 3 by 3 grid at the rear focal length of the relay lens with no separation between
the detectors. For the measurements using fewer than nine detectors, the unused sections of the
DMD would be set to no transmission. Therefore, no hardware changes were required for any of
the measurements presented in this work.

3 Analysis

A ray trace simulation was used to analyze errors in the system which changed the system
response matrix. The system response matrix compressed the images of the MNIST data, and
the performance of the system was measured from the accuracy with which a classifier could
determine the digits. A radiometric model was used to determine the power transmitted to the
detector for both the prism array and DMD task-specific architecture. The system response was
combined with the radiometric model and noise was added to the detectors to determine how the
performance of the compressive sensing systems would compare to traditional imaging systems.

3.1 Nonsequential Ray Tracing

It was not feasible to analytically calculate the scattering and stray light across many element
designs presented in this work. To evaluate the performance of the holistic compressive archi-
tectures performing an MNIST classification task, a nonsequential ray trace was performed using
Zemax OpticStudio® (ZOS).
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A source rectangle was added before the first surface of each design. The source created 106

randomly positioned collimated rays simulating the input from one object space location.
The position and size of the source were set to fill the aperture of each system. To build up
the system response matrix, flux on each detector was recorded for each input angle. For the
MNIST dataset, there are 28 by 28 input angles, requiring 784 total ray traces.

An automatic process to build up the system response was created. The input angle was
scanned using Python scripts controlling ZOS through the application programming interface.
Flux on each detector for each angle was saved into a matrix. A system response matrix was
created from the detector measurements by dividing the matrix by the maximum value, normal-
izing the matrix between 0 and 1.

Performance of the compressive optical systems was simulated using the system response
matrices. Images of the MNIST dataset were compressed by multiplying the system response
matrices. A random forest29 ensemble classifier was trained on compressed data from all 60,000
preassigned training images and tested on compressed data from all 10,000 test images. Python’s
scikit-learn module, version 0.20.2, implementation of random forest classifier was used. The
number of trees in the forest was set to 100. Split quality was measured using entropy, and each
split had to contain at least two data points. The maximum number of features that each tree
considered was floor[lnðnumber of detectorsÞ þ 1], where ln is the natural logarithm.

3.2 Radiometric Model

Radiometric throughput is used to calculate the signal power on the detector for a given source
radiance and enables analysis of the proposed compressive optical systems’ expected sensitivity
requirements as compared to traditional imaging systems. The flux Φ on a detector is

EQ-TARGET;temp:intralink-;e002;116;447Φ ¼ GL; (2)

where G is the throughput of the detector and L is the radiance of the source.
In a traditional imaging device, the throughput can be defined by the area, A, of a pixel and

the projected solid angle, Ω, subtended by the exit pupil,

EQ-TARGET;temp:intralink-;e003;116;380Gimaging ¼ AΩ ¼ w2
dπ sin

2ðθÞ; (3)

where θ is the half-angle subtended by the exit pupil and wd is the width of a pixel.30 Assuming
that the exit pupil is the same size as the entrance pupil sets the angle as

EQ-TARGET;temp:intralink-;e004;116;323θ ¼ tan−1
�

1

2F∕#

�
; (4)

where F∕# is the f-number of the lens.28 The throughput is approximately constant for all
detector elements across the narrow field of view of the system.

The throughput of the system can be extended to a radiometric system response matrix by
calculating the sensitivity of each detector from all the input angles. The imaging systems were
assumed to be ideal, perfectly mapping each angle from object space onto a single detector.
Therefore, the imaging system response matrices were 784 by 784 element identity matrices.
The imaging radiometric system response matrix Ξ is given as

EQ-TARGET;temp:intralink-;e005;116;194Ξimaging ¼ GimagingI; (5)

where I is an identity matrix with height and width equal to the number of angles in the scene.
Compressive sensing systems do not have a one-to-one mapping between object space and

detector values, which makes calculating the throughput less straightforward. Each detector
has contributions from multiple nonclustered input angles. The throughput is a summation of
the solid angle for all the contributing input angles times the aperture area that limits the size of
each beam. The contribution of each beam is also multiplied by the transmission defined by
the system response matrix. The generalized throughput of the compressive sensing systems is
given as
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EQ-TARGET;temp:intralink-;e006;116;735Gcompressive½k� ¼
XM
m¼1

Aapt½m; k�Ω½m�Θ½m; k�; (6)

where m is the angle number, k is the detector number, M is the number of pixels in the scene,
Aapt is the area of the aperture for each input beam, Ω½m� is the projected solid angle subtended
by each pixel in the scene, and Θ½m; k� is the system response matrix weight for each input
angle and detector. This throughput can be calculated at any surface in the optical system;
however, these calculations can be complex. To simplify this, we calculate the throughput at
the aperture where the irradiance is constant. In both of the compressive classification architec-
tures, this aperture surface is at the prism array.

The aperture area of each beam is the area of detector that is illuminated. The throughput
calculation is in the aperture plane, so the detector area is projected to the aperture plane. The
aperture area will be the minimum between the area of the prism and the area of the detector
when it is projected onto the prism plane,

EQ-TARGET;temp:intralink-;e007;116;563Aapt½m; k� ¼ minðAprism; A 0
detectorÞ; (7)

where Aprism is the area of the prism and A 0
detector is the effective area of the detector projected

onto the prism plane. Here Aprism is always larger than A 0
detector for the case where the detector is

overfilled across the instantaneous field of view (iFOV) as is the case for the compressive sensing
systems presented here. Therefore, the area for the throughput calculation is the area of the detec-
tor times the magnification. The aperture area becomes independent of the detector because
all the detectors are of the same size and also independent of the angle because all angles are
contributing to the detectors of the same size.

The projected solid angle in the throughput calculation is the iFOV for each input angle
times a cosine projection term. In this work, the iFOV was defined as the solid angle subtended
by one of the 28 by 28 pixels in object space. For the DMD architecture, the HFOV was multi-
plied by the field of view magnification from the telescope. The projected solid angle was
approximated as the differential solid angle times the cosine of the center angle of the pixel.
The approximation was valid because the iFOV is small and the cosine of the largest input angle
is approximately 1. A differential solid angle can be calculated by the differential area that
subtends it:30

EQ-TARGET;temp:intralink-;e008;116;351dω ¼ dA
r2

; (8)

where dω is the differential solid angle, dA is the differential area, and r is the distance to the
area. From this equation, we set the distance to 1 and assume a rectangle defined by the pixel in
angular space,

EQ-TARGET;temp:intralink-;e009;116;273iFOV ≈ dω ≈ 4 tan

�
θiFOV
2

�
2

; (9)

where θiFOV is the angle subtended by one of the pixels. Combining the area, solid angle, and
weighting from the normalized system response matrix gives the radiometric system response
matrix for the compressive sensing systems as

EQ-TARGET;temp:intralink-;e010;116;192Ξcompressive½m; k� ¼ A 0
detectoriFOV cos½θðmÞ�Θ½m; k�; (10)

where θðmÞ is the center angle of each pixel in the scene. Summing the radiometric system
response matrix across all input angles gives the throughput of the compressive sensing systems
as

EQ-TARGET;temp:intralink-;e011;116;124Gcompressive½k� ¼
X784
m¼1

Ξcompressive½m; k� (11)

Redman et al.: Performance evaluation of two optical architectures for task-specific compressive classification

Optical Engineering 051404-9 May 2020 • Vol. 59(5)



3.3 Noise Analysis

The system response matrices give the ideal performance of the system, and the radiometric
model determines how much signal will reach the detectors. We combined the two models
to estimate how the performance of the compressive sensing systems compares to the imaging
systems in the presence of noise. The system model was

EQ-TARGET;temp:intralink-;e012;116;668V ¼ LΞρþ N; (12)

where V is the voltage measured by the detectors, L is the radiance of the scene, Ξ is the radio-
metric system response matrix, ρ is the responsivity of the detectors, and N is a vector containing
the noise for each detector.

The underdefined nature of measuring the MNIST dataset made absolute noise models from
source to detector difficult to define. Instead, the relative performance of the architectures was
considered for this work. The radiometric system response for each system were normalized by
the throughput of the F∕2 imaging system giving a normalized radiometric sensing matrix as

EQ-TARGET;temp:intralink-;e013;116;554

bΞ ¼ Ξ
GF∕2

: (13)

The scene term was system-independent, and the responsivity of the detectors was assumed
to be the same for all the systems. This term was multiplied by the throughput of the F∕2
imaging system to remove the units. The unitless object vector x̂ became

EQ-TARGET;temp:intralink-;e014;116;472x̂ ¼ GF∕2ρL: (14)

The absolute amplitude of the object vector was not needed for a relative comparison
between the systems, so the images of the MNIST dataset were normalized to have values
between 0 and 1.

The noise was assumed to have a Gaussian probability distribution with zero mean and vari-
ance σ. Signal-independent noise ignores the Shot noise of the system and assumes that the noise
comes from thermal processes in the electronics. The complete relative system model was

EQ-TARGET;temp:intralink-;e015;116;367ŷ ¼ x̂ Ξ̂þNð0; σÞ; (15)

where ŷ are the measured values passed to a random forest classifier andNð0; σÞ are the Gaussian
distributed noise values with zero mean and standard deviation σ.

Signal-to-noise ratio (SNR) is a good metric to compare the performance of the systems;
however, the SNR of each system depends on the signal at the detector which is dependent
on the throughput of the system. We defined a peak SNR (pSNR) relative to the F∕2 imaging
system. The peak value of the scene is always 1, so the pSNR of the F∕2 imaging system is

EQ-TARGET;temp:intralink-;e016;116;262pSNRF∕2 ¼
1

σ
: (16)

4 Results and Discussion

The system response matrices of each system were created using the ray trace simulation pro-
cedures described in Sec. 3.1. Example system response matrices for the case of nine detectors
are shown in Fig. 6. For a perfect optical system, the system response matrices would exactly
match the sensing matrix that they were designed from (i.e., the ideal sensing matrix shown in
Fig. 6(a) would be perfectly reproduced using the optical hardware). However, this was not the
case. The prism array architecture had a blurred system response matrix compared to the sensing
matrix as shown in Fig. 6(b). This blurring was caused by the prism accepting angles larger than
the iFOV. The DMD optical system closely reproduced the original system response matrix.
However, there are rows and columns where the response was zero (e.g., a column of data
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is lost in Fig. 5(c), k ¼ 5 detector response). This zero response results from regions where input
angles focused directly on the edge of a DMDmirror in the simulation. The error would likely be
removed for a real system with an iFOV instead of perfectly collimated light. However, the error
indicates that scattering will be a possible problem.

The system response matrices from these ray trace simulations were used to compress the
60,000 training images from the MNIST dataset. A random forest classifier29 was trained on
this compressed data. The trained classifier was then used to classify a compressed test dataset
consisting of 10,000 images, and the classification accuracy was recorded. The accuracy of the
compressive sensing systems was compared to the classification accuracy of the ideal sensing
matrix.

Figure 7 shows the classification accuracy for task-specific classification systems designed
with one to nine detectors. Error bars are set by the standard deviation from 10 training clas-
sification cycles. Both optical systems had similar performance to the ideal sensing matrix, con-
verging to over 90% accuracy using nine detectors [Fig. 7(a)], and less than 3% difference from
the ideal sensing matrix across all configurations [Fig. 7(b)]. The performance difference
between the ideal sensing matrix and system response matrices [Fig. 7(b)] showed the interesting
result that the prism array had better performance than the ideal sensing matrix when a five-,
eight-, or nine-detector configuration was used. We expect that the improved performance was
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y

Fig. 6 Side-by-side comparisons between the system response matrices for the nine detector
configuration for the (a) ideal system response matrix, for the (b) prism array architecture, and
for the (c) DMD architecture.
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Fig. 7 (a) The classification accuracy of the prism array architecture and the DMD architecture
had similar performance to the ideal sensing matrix as the number of detectors was increased. The
accuracy of both architectures was close to the classification accuracy of the sensing matrix. The
difference of the classification accuracy for each architecture relative to the sensing matrix was
plotted separately to show detail and is provided in (b). (b) The DMD architecture was slightly
worse than the ideal sensing matrix for all the number of detectors. The prism array architecture
had performance exceeding the ideal sensing matrix for five, eight, and nine detectors because
the blurring relaxed the sparsity.
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due to the blurring relaxing the sparsity constraint of the optimization. The prism array had
significant blurring as shown in Fig. 6(b). The blurring locally released some of the sparsity
constraint, allowing for improved performance without increasing the number of prism elements.
This indicates that classical design techniques may not be the best method for optimizing the
compressive sensing systems. The below ideal performance of the DMD optical design was
likely due to the dead rows and columns caused by an input angle being focused onto the edge
of a mirror in the DMD, and the system performance would likely be improved by simulating
the full iFOV instead of a collimated source.

The radiometric models set a comparison between the compressive sensing systems and im-
aging systems. Table 1 shows the calculated throughput for both ideal imaging systems and the
nine-detector case for both compressive sensing architectures. For both cases, the source was
assumed to fill the field of view of the systems. The compressive sensing systems had higher
throughput than an imaging system with an F∕2 lens and 5 by 5 μm active area of pixels which
would be a high-throughput consumer camera.

Adding noise to the detectors of the systems decreased the classification accuracy, as shown
in Fig. 8. The F∕2 imaging system had the highest classification accuracy for SNR greater than
2.3 which was expected because the compressive sensing systems were using 98.85% fewer
detector elements than the imaging systems. The high throughput of the compressive sensing
systems resulted in both the prism array and DMD systems with more than five detectors having
higher classification accuracies than the F∕4 imaging system when the SNR was less than 8.
The DMD architecture was insensitive to noise due to the high throughput of the architecture.

Table 1 The throughput of the two imaging systems versus the throughput of the compressive
sensing systems. The imaging systems are assumed to be ideal and calculated for the on-axis
pixel. The throughput is unique for each detector of the compressive sensing systems. The values
shown are for the nine-detector configuration of each system. The order of the detectors for the
compressive classification systems correspond to the system response matrices shown in Fig. 6.

System Throughput (μm2sr)

Imaging systems For each pixel

F∕2 lens 5 μm pixel 4.62

F∕4 lens 5 μm pixel 1.21

Compressive systems Detectors

Prism array 8.94 22.65 17.01 7.22 20.36 8.86 14.41 5.60 12.91

DMD 20.67 55.23 42.89 15.56 46.89 22.75 38.62 15.46 32.76

Classification accuracy with noise

A
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y 
(%

)

Prism array 1 detector
Prism array 5 detectors
Prism array 9 detectors
DMD 1 detector
DMD 5 detectors
DMD 9 detectors
Imaging F/2
Imaging F/4

pSNR

Fig. 8 The noise was random Gaussian added to the detector measurements. The standard
deviation was set so that the bright regions of the MNIST images imaged by the F∕2 system had
the displayed SNR.
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5 Comparison

The two compressive sensing architectures described in this paper are both realizations of the
same sensing matrices; however, the architectures used to realize these sensing matrices have
different strengths and weaknesses. The prism array architecture is a monolith element that
requires specialized fabrication. The DMD architecture was much larger and required more
power, but the optics could be realized using off-the-shelf components and an easily fabricated
prism array.

The construction of the two architectures have different challenges. The fabrication of the
prism array requires specialized tools such as additive manufacturing. However, assembly of the
system is trivial after the part is fabricated. The prism array has to be aligned to the detector
elements. The overfill of the detectors allows for some misalignment. The only custom com-
ponents required for the DMD architecture are the nine prisms used to split the channels. All the
other components can be realized with commercial off-the-shelf components, and the sensing
matrix can be changed without changing the hardware. Assembling the system is more involved
because it requires aligning seven elements.

The form factor of the two systems is also a consideration. The prism array is designed to
mount 9 mm in front of the detectors. The only external components needed would be to control
the field of view. The DMD architecture is much larger because it requires the vertical space for
the optics to adjust the field of view and to image the scene onto the DMD and the horizontal
space for the relay lens and the detectors. Optimization can reduce the footprint, but the system
will not reduce to the size of the prism array architecture.

From a throughput standpoint, the prism array makes more efficient use of the aperture area,
but there is no magnification and so the aperture area is limited by the prism area or the detector
area, whichever is smaller. The DMD architecture can be optimized to increase the magnifica-
tion, thereby increasing the effective area of detector at the aperture plane. The higher throughput
of the DMD architecture makes it more resistant to noise.

For errors in the sensing matrix, the DMD is capable of more faithfully reproducing the
sensing matrix. The objective lens has a one-to-one mapping of input angles, so no angle cross
talk was seen or is expected. If the spacing between the channels on the DMD is too narrow, then
the overlapping channels will cause significant channel cross talk. The prism array architecture
blurs the sensing matrix. However, the analysis of system performance indicated that the blurring
may increase classification accuracy. The increased performance is likely due to the blurring
relaxing the sparsity constraint.

The high throughput and adaptability of the DMD architecture made it ideal for a generalized
system. The small form factor without any moving parts of the prism array made it ideal for tasks
that require low size, weight, and power.

6 Conclusion

Machine learning algorithms have become a mainstay of image analysis, and with the increased
use of machine learning, large datasets of labeled data have become commonly available.
Compressive sensing systems can make use of these datasets to minimize the data being col-
lected and release the constraints of imaging. This research has shown a workflow for creating
optical components to realize a compressive sensing matrix using the basic example of classi-
fying the MNIST dataset. The workflow directly scales to more complicated sensing matrices,
only limited by the print area for the prism array and the DMD size and resolution for the DMD
architecture. This workflow enables the rapid creation of compressive sensing systems for
arbitrary datasets.

We have presented two optical architectures for the creation of task-specific compressive
imagers. The first architecture was a monolithic part that used a prism array to directly implement
the sensing matrix. The second architecture used a simple prism array, conventional optics, and
a DMD to implement the sensing matrix.

The sensing matrix of each architecture was simulated using the nonsequential ray tracing for
configurations of detectors ranging from one to nine. The prism array was shown to blur the
sensing matrix, where the DMD architecture was shown to reproduce the sensing matrix with
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much greater fidelity. However, the classification performance of the two systems was shown to
be similar despite the blurring.

The radiometric throughput of both systems was found to be greater than an F∕2 lens
imaging onto 5-μm pixels. The noise analysis of the systems showed that the F∕2 imaging
system had better performance than the compressive classification systems when the SNR
was >2. However, the high throughput of the compressive sensing systems resulted in higher
classification accuracy than an F∕4 imaging system when the SNR was <8. These results
indicate that the compressive classification systems could have similar performance, or better
in low SNR condition, to imaging systems while requiring 98.85% fewer detector elements.

The discrete detectors of the demonstrated architectures open the door to using unique
detectors for each channel increasing the spectral bandwidth or combining extremely high speed
measurements for temporal Fourier analysis along with spatial measurements for localization.

The prism array opens up the possibility of a solid-state optical component with the space
between the detectors and the prisms filled with an optical epoxy, making the entire system
extremely compact and vibration resistant. The DMD architecture enables a reconfigurable com-
pressive sensing system where the sensing matrix could be dynamically changed to perform
different task-specific functions.
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