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Abstract. A robust calibration approach for a telecentric stereo camera system for three-
dimensional (3-D) surface measurements is presented, considering the effect of affine mirror
ambiguity. By optimizing the parameters of a rigid body transformation between two marker
planes and transforming the two-dimensional (2-D) data into one coordinate frame, a 3-D
calibration object is obtained, avoiding high manufacturing costs. Based on the recent con-
tributions in the literature, the calibration routine consists of an initial parameter estimation by
affine reconstruction to provide good start values for a subsequent nonlinear stereo refinement
based on a Levenberg–Marquardt optimization. To this end, the coordinates of the calibration
target are reconstructed in 3-D using the Tomasi–Kanade factorization algorithm for affine
cameras with Euclidean upgrade. The reconstructed result is not properly scaled and not
unique due to affine ambiguity. In order to correct the erroneous scaling, the similarity trans-
formation between one of the 2-D calibration plane points and the corresponding 3-D points is
estimated. The resulting scaling factor is used to rescale the 3-D point data, which then allows
in combination with the 2-D calibration plane data for a determination of the start values for the
subsequent nonlinear stereo refinement. As the rigid body transformation between the 2-D
calibration planes is also obtained, a possible affine mirror ambiguity in the affine reconstruc-
tion result can be robustly corrected. The calibration routine is validated by an experimental
calibration and various plausibility tests. Due to the usage of a calibration object with metric
information, the determined camera projection matrices allow for a triangulation of correctly
scaled metric 3-D points without the need for an individual camera magnification determina-
tion. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.OE.59.5.054104]

Keywords: structured light; fringe projection; telecentric lens; affine camera; stereo camera pair;
calibration; affine mirror ambiguity; factorization algorithm.

Paper 191817 received Dec. 30, 2019; accepted for publication May 8, 2020; published online
May 26, 2020.

1 Introduction

Fringe projection profilometry is a state-of-the-art method in order to characterize the geometry
information of three-dimensional (3-D) objects, as it allows a noncontact, fast, and areal data
acquisition in the micrometer range.1–3 If a measurement setup with a small field-of-view (FOV)
is required, telecentric lenses can be employed either in stereo vision (with4,5 or without addi-
tional projector6,7) or in single camera–projector configurations (with entocentric8–10 or telecen-
tric projector11,12) or telecentric Scheimpflug approaches.13,14

The calibration of a telecentric structured light sensor is not as straightforward as in the ento-
centric case, as a telecentric camera cannot be modeled by the pinhole camera but requires
the introduction of the so-called affine camera model instead. As a telecentric lens ideally only
maps parallel light onto the camera sensor, the projection center lies at infinity (cf. Ref. 15,
p. 166, 173). A distance change along the optical axis of the camera will not result in a dimen-
sional change of the mapped object.
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The need for accurate calibration strategies for affine structured light sensors and cameras
resulted in a variety of publications in this field. Therefore, in order to motivate this paper and to
correctly categorize the derived approach, a short overview on existing calibration strategies is
given. The overview is similar to the one provided by Chen et al.,6 but extended by recent devel-
opments and adapted or shortened when considered reasonable. For example, phase-height-
based methods such as given in Ref. 16 are not covered, as they are not considered relevant
for the derived calibration strategy reported in this paper. Also, calibration techniques based
on 3-D objects with exactly measured feature locations (e.g., cubes with markers) are not
covered, as the manufacturing of such objects is extremely expensive, and therefore not con-
sidered to be practical. Specially adapted calibration techniques for telecentric sensors in
Scheimpflug arrangement, as found in Refs. 13 and 14, are not covered as well, as they do not
apply to the used hardware setup.

1.1 Planar-Object-Based Methods

In this category, strategies are summarized, which use two-dimensional (2-D) calibration planes
to calibrate affine cameras.

Lanman et al.17 presented an approach to reconstruct 3-D surface data based on the motion of
an object’s depth discontinuities when viewed under orthographic projection. To this end, the
authors introduce a model-based calibration approach for a telecentric camera using a planar
checkerboard, modified with a pole of known height in order to recover the ambiguity in sign,
when estimating the extrinsic parameters for a specific calibration pattern pose. The camera
calibration uses a factorization approach inspired by Zhang18 in order to provide start values
for the camera intrinsics and extrinsics. The parameters are further refined in a Levenberg–
Marquardt optimization. The authors do not consider lens distortion.

Chen and Liao et al.6,19 presented a two-step calibration approach for a telecentric stereo
camera pair, which comprises a factorization method to determine the initial camera parameters
similar to the approach found in Ref. 17. The parameters are refined in a nonlinear optimization
routine. The sign ambiguity problem when recovering the rotation matrix is solved with help of a
micropositioning stage used to capture two calibration plane poses under known translational
displacement. Moreover, the approach considers radial distortion. The authors suggest the
acquisition of as many target poses as possible in order to avoid degeneracy and in consequence
an “ill calibration” (Ref. 6, p. 88).

Li et al.11,20 proposed a calibration method for a single camera based on an analytical camera
description in order to model the distortion of a telecentric lens correctly (namely radial, decen-
tering, and thin prism distortions) and developed it into an approach to calibrate a structured light
sensor with telecentric camera and projector. It is not fully clear how the authors solve the prob-
lem of sign ambiguity, when recovering the extrinsics. In their literature review, Li and Zhang9

state that “it is difficult for such a method to achieve high accuracy for extrinsic parameters
calibration [. . . ].”

Yao and Liu21 introduced an approach where again an additional stage is used to solve for the
extrinsic sign ambiguity. After a camera start value determination based on a distortion-free
camera model, two nonlinear optimization steps are executed. In the first step, the calibration
plane coordinates are optimized to allow the usage of cheap print patterns. Second, all camera
parameters are refined, including radial and tangential lens distortion, and also the distortion
center. The approach provides a greater flexibility, as the distortion center is not necessarily
fixed to the middle of the sensor. Nevertheless, a comparison between calibration results based
on a printed and a precisely manufactured pattern shows great difference in the estimated dis-
tortion parameters. The authors argument that the distortion is generally small for telecentric
lenses. Therefore, small differences in the optimization procedure result in great parameter
differences. Another reason could be the missing re-estimation of the calibration plane coordi-
nates in the second nonlinear optimization step. The distortion-free camera model is considered
ground truth when estimating the calibration points.

Hu et al.22 presented an approach for a single camera calibration based on the results by Yao
et al., but provided a method to gain an initial estimation for the distortion center to avoid local
minima. The distortion center and the parameters are further refined in a subsequent nonlinear
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full-parameter optimization. The authors consider both radial and tangential distortion coeffi-
cients. Their approach is developed into a full calibration and reconstruction routine for a micro-
scopic stereo vision system.5

Li and Zhang9 introduced a calibration routine for a hardware setup comprising an entocen-
tric projector and a telecentric camera and used the absolute coordinate frame of the projector as
a reference for the telecentric camera. In the first step, the projector is calibrated with the standard
camera pinhole model. The necessary correspondences are provided by the uncalibrated tele-
centric camera, capturing multiple calibration plane poses with and without vertical and hori-
zontal phasemap, respectively (cf. concept of image capturing projector in Ref. 23). The feature
correspondences used for the projector calibration are then projected back into 3-D (in the pro-
jector’s coordinate frame) to calibrate the affine camera. This approach is very stable but requires
an entocentric projector, which might not be available in a sensor setup.

1.2 Affine Autocalibration

This category comprises so-called autocalibration approaches for affine cameras. As most auto-
calibration approaches require structure-from-motion results as input, exemplary developments
in this field are covered as well.

According to Hartley et al., “auto-calibration is the process of determining internal camera
parameters directly from multiple uncalibrated images” (cf. Ref. 15, p. 458), without using spe-
cially designed calibration devices with known metric distances, or scene properties such as
vanishing points. The derivation of the camera intrinsics might be directly connected to the
reconstruction of 3-D scene points, upgrading a nonunique projective or affine reconstruction
to a Euclidean reconstruction by applying special constraints. Such a constraint could be the
assumption of fixed camera intrinsics for all images.

The basic theory for autocalibration of a perspective projection camera is formulated by
Faugeras et al.24 Well-known classical structure-from-motion approaches under orthography are
suggested for the two-view scenario by Koenderink and van Doorn,25 and for at least three views
by Tomasi and Kanade, namely the factorization algorithm.26 The camera is moved around an
object and captures images from different positions under orthographic projection. Detected fea-
ture correspondences in the sequential images are used to recover the scene’s shape and the
camera motion in affine space. Appropriate boundary conditions allow for the reconstruction
of Euclidean structure up to scale.

The affine 3-D reconstruction result is used as input in the generalized affine autocalibration
approach by Quan.27 The authors introduced metric constraints for the affine camera, comprising
orthographic, weak perspective, and paraperspective camera model.

An important precondition for the applicability of the Tomasi–Kanade factorization algo-
rithm is the visibility of the used point correspondences in all views. Using data subsets,
Tomasi and Kanade enable the factorization approach to handle missing data points. The sub-
set-based reconstructed 3-D coordinates are projected onto the calculated camera positions in
order to obtain a complete measurement matrix. This method nevertheless requires feature points
that are visible in all views (the data subsets). It allows patching of missing matrix entries, rather
than providing an approach for sparse data sets.

Brandt derived a more flexible structure-from-motion approach, as “no single feature point
needs to be visible in all views” (cf. Ref. 28, p. 619). The approach comprises two iterative affine
reconstruction schemes, and a noniterative, linear method, using four noncoplanar reference
points visible in all views. Brandt and Palander29 furthermore presented a statistical method
to recover the camera parameters directly from provided point correspondences without the
necessity of an affine reconstruction. As solution, a posterior probability distribution for the
parameters is obtained.

Guilbert et al. proposed an approach for sparse data sets using an affine closure constraint,
which allows “to formulate the camera coefficients linearly in the entries of the affine funda-
mental matrices” (cf. Ref. 30, p. 317), using all available information of the epipolar geometry.
The authors claim that the algorithm is more robust against outliers compared to factorization
algorithms. Moreover, they present an autocalibration method and directly compare it to Quan’s
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method. The so-called contraction mapping scheme shows a 100% success rate in reaching the
global minimum and a lower execution time.

Horaud et al.31 described a method to recover the Euclidean 3-D information of a scene when
capturing scene data with an uncalibrated affine camera mounted to a robot’s end effector. The
authors use controlled robot motions, in order to remove affine mirror ambiguity and guarantee a
unique affine reconstruction solution. The camera intrinsics are obtained by performing an QR-
decomposition according to Quan.27

An approach of motion recovery from weak-perspective images is presented by Shimshoni
et al.32 The authors reformulate the motion recovery problem to a search for triangles on a sphere,
offering a geometric interpretation of the problem.

Further information on the concepts of affine autocalibration in general can be found in
Ref. 33, p. 163 et seq.

1.3 Hybrid Method

Liu et al.12 combined the Tomasi–Kanade factorization algorithm with a 3-D calibration target in
order to retrieve the parameters of a fringe projection system with telecentric camera and pro-
jector. The authors use a 3-D calibration target with randomly distributed markers. The target
consists of two 2-D planes, forming a rooftop structure. As the marker positions on the planes are
not required to be known beforehand, the target manufacturing requirements are low.

The suggested approach is basically a two-step routine: the 3-D calibration target is captured
by the camera in different orientations, with and without two sets of gray code patterns, gen-
erated by the projector. The approach of the so-called image capturing projector by Zhang et al.23

allows now to solve the correspondence problem between camera, projector, and circular dots on
the target. First, the dots’ image coordinates are extracted for camera and projector. Then, using
the Tomasi–Kanade algorithm and an appropriate upgrade scheme from affine to Euclidean
space, an initial guess for the calibration targets shape (3-D coordinates of the circular dots)
and the corresponding projection matrices are obtained. As the point cloud data can only be
reconstructed up to scale, the camera’s effective magnification has to be provided in order
to reconstruct metric 3-D data of the circular dots. As no metric distances are defined on the
3-D calibration target, the authors suggest the additional usage of a simple 2-D target in a plane-
based calibration routine, such as given in Ref. 21. In the second step, the initial guesses are used
as start parameters in a nonlinear bundle adjustment scheme to minimize the total projection
error. Next to the target poses, also the projector-camera rig parameters and the 3-D coordinates
of the calibration target are refined.

1.4 Contributions in this Paper

The approach by Liu et al. is an alternative to the routines discussed in Sec. 1.1, avoiding among
others planarity-based degeneracy problems [e.g., as reported by Chen et al. in Ref. 6 (p. 88) or in
general by Collins et al. in Ref. 34]. The approach does not rely on the usage of a plane with
linear stage or a pole but on a 3-D rooftop calibration target. The Tomasi–Kanade algorithm
provides a good estimation of the camera rotations (even with a relatively low number of
captured object poses), which allows for a robust convergence of the subsequent nonlinear
refinement.

Nevertheless, in order to obtain a fully calibrated measurement system, the magnification
factor has to be determined separately in an individual step, which is cumbersome. Also, the
authors do not address the problem of the so-called mirror ambiguity, which is still present when
reconstructing affine point data with the Tomasi–Kanade algorithm [cf. Ref. 35 (p. 415), Ref. 36
(p. 7–8), and Ref. 31 (p. 1576)]. As the reconstructed 3-D data might be mirrored, the start values
for nonlinear optimization are also estimated based on a mirrored point cloud, resulting in mir-
ror-based camera locations (for further clarification see Sec. 3.2.5). Although the subsequent
nonlinear optimization might still converge, triangulated geometry results might be mirrored,
as the camera – projector – arrangement is potentially inverted.

The mirror ambiguity is especially in a stereo camera setup problematic. Two individual
affine reconstruction schemes for both cameras can result in start values, that are both based
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on a mirrored and nonmirrored point cloud. A combination of the camera start values in a single
stereo optimization directly affects its robustness. The optimizer might converge toward a local
minimum or not converge at all.

Therefore, we propose an adapted calibration procedure for a structured light sensor com-
prising a telecentric stereo camera pair and an entocentric projector as feature generator. The
projector is not meant to be used for the calibration of the affine cameras to allow for a direct
calibration. Hence, the suggested routine is also valid for a simple stereo camera setup without
projector. As the triangulation is conducted between the two cameras, the hardware setup is
equivalent to the setup presented by Liu et al. (two telecentric lenses are used for triangulation).

Our routine is also based on the Tomasi–Kanade factorization algorithm to determine the start
values. The application of a more recent affine reconstruction and autocalibration scheme might
be interesting in the scope of this paper, but the additional effort for the algorithm implementa-
tion will prove not to be necessary, as the proposed calibration scheme works just fine. The
feature visibility restriction will not prove to be an obstacle in the suggested approach, as the
number of detectable features in all views is large enough by introducing an appropriate cal-
ibration target.

The contributions of this paper can be summarized to the following points:

• Our calibration approach uses a 3-D calibration target combining two 2-D planes with
defined dot patterns. The designed approach allows for a complete calibration of the pre-
sented telecentric stereo camera system without the need for an additional magnification
factor determination.

• Although a 3-D target is used, the target fabrication is only slightly more expensive than in
the 2-D case. This is due to the fact that the rigid body transformation between two 2-D
planes is optimized together with the sensor parameters. Only the planes have to be manu-
factured with high precision. Prior information on the plane orientation in relation to each
other is not necessary. The calibration routine yields a metric 3-D calibration object.

• We introduce an Aruco marker-based detection strategy as introduced by Garrido-Jurado
et al.37 in order to distinctly differentiate between the two plane marker patterns of the 3-D
calibration object.

• The estimated rigid body transformation between the two 2-D planes is also used to test the
reconstructed 3-D points for affine mirror ambiguity. If the points are mirrored, a simple
matrix operation is suggested to correct the erroneous start values.

• We directly include a distortion model into the calibration routine.
• In order to facilitate the acquisition process of calibration images, only one stereo image of

the same target pose is required. This pose determines the measurement coordinate frame.
The motivation for this procedure is similar to the one given by Chen et al.6 It is not easy to
capture a large number of target orientations, which are on the one hand fully represen-
tative for a specific camera and allow for a robust determination of intrinsics, and on the
other hand are simultaneously viewable by both cameras. An extreme target pose, which
might be helpful for a robust calibration of camera one, is potentially not perfectly observ-
able by camera two.

2 Affine Camera Model

The mathematical model of the affine camera is defined as found in Ref. 6:

EQ-TARGET;temp:intralink-;e001;116;187

�
cu
1

�
|fflfflffl{zfflfflffl} ¼

2
4 m

sx
− m cotðρÞ

sx
cx

0 m
sy sinðρÞ cy

0 0 1

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2
4 r11 r12 r13 tx
r21 r22 r23 ty
0 0 0 1

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�

OX
1

�
|fflfflfflffl{zfflfflfflffl}

cuh ¼ K CT̃O OXh:

; (1)

The model defines a mapping of an arbitrary homogeneous 3-D object point OXh onto the
camera sensor. The point is transformed by a truncated rigid body matrix CT̃O into the 2-D
coordinate frame fCg of the camera. The multiplication with the affine camera matrix K maps
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the resulting homogeneous 2-D point CXh onto the sensor in location cu (in px) in the coordinate
frame fcg.

The pixel sizes in the x- and y-directions are parametrized by sx and sy, respectively (in
metric length per pixel, e.g., mm

px
), the magnification is defined bym (no unit). Skew is considered

in terms of skew angle ρ. The origin of the image coordinate system is fixed to the middle of the
camera sensor to define a center for a telecentric lens distortion model according to cx ¼ w∕2
and cy ¼ h∕2, with sensor width w and height h.

The affine projection can also be formulated in a compact, inhomogeneous form according to

EQ-TARGET;temp:intralink-;e002;116;635

�
cu
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�
|fflfflffl{zfflfflffl} ¼
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p11 p12 p13

p21 p22 p23

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

0
@ OX
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A

|fflfflfflffl{zfflfflfflffl}
þ

�
p14

p24

�
|fflfflffl{zfflfflffl} ;

cu ¼ cMO OX þ cp;

(2)

with cMO and cp holding the entries of the matrix multiplication result KCT̃O as given by

EQ-TARGET;temp:intralink-;e003;116;549KCT̃O ¼
�

cMO cp
0 0 0 1

�
¼

2
4p11 p12 p13 p14

p21 p22 p23 p24

0 0 0 1

3
5: (3)

A distortion model is introduced considering radial and tangential distortion based on the
approach by Brown et al. (cf. Refs. 38–40) and is defined as

EQ-TARGET;temp:intralink-;e004;116;467CXd ¼ ð1þ k1 · R2 þ k2 · R4ÞCX þ 2p1 · CX · CY þ p2ðR2 þ 2 · CX
2Þ; (4)

EQ-TARGET;temp:intralink-;e005;116;423CYd ¼ ð1þ k1 · R2 þ k2 · R4ÞCX þ 2p2 · CX · CY þ p1ðR2 þ 2 · CY
2Þ: (5)

CðXd; YdÞ parametrizes a distorted and CðX; YÞ an undistorted point in the affine camera
coordinate frame fCg. R defines the radial distance to the distortion center with

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CX

2 þ CY
2

p
. The coefficients are combined in distortion vector kC ¼ ðk1; k2; p1; p2ÞT.

For perspective cameras, the distortion model is applied upon so-called normalized image
points (ideal image plane), in order to avoid numerical instability, when estimating the param-
eters. As this ideal image plane does not exist for affine cameras, the distortion is added in
coordinate frame fCg. Although this leads to values of larger magnitude compared to the nor-
malized image coordinates for perspective cameras [especially due to the R4-term in Eqs. (4) and
(5)], the distortion vector kC could be optimized robustly.

3 Calibration Routine

In the first step, the initial parameter values for the affine camera matrices, the truncated rigid
body transformation, and the transformation from the first to the second 2-D calibration plane are
estimated. To this end, according to the approach introduced by Liu et al.,12 the Tomasi–Kanade
factorization algorithm26 is used in order to reconstruct the 3-D data of the calibration target
coordinates. In contrast to the approach by Liu et al., two equidistant marker grids with defined
distances are used, instead of randomly distributed markers. The additionally provided distance
information is exploited to determine the cameras’ magnification values to obtain camera pro-
jection matrices that allow for metric 3-D measurements. Moreover, the presented routine allows
to correct mirrored start values, by distinctly solving the affine mirror ambiguity. The start values
are determined for each camera independently, meaning that the complete procedure according
to Sec. 3.2 has to be executed twice.

In the second step, the initial parameter values for both cameras are refined together via
nonlinear stereo optimization, in which also the distortion parameters are estimated.

Beermann et al.: Calibration routine for a telecentric stereo vision system. . .

Optical Engineering 054104-6 May 2020 • Vol. 59(5)



3.1 Calibration Target and Marker Detection

The layout of the 3-D calibration target is shown in Fig. 1(a). The rooftop structure was intro-
duced by Liu et al., but the random dot distribution is substituted by two defined planar dot
patterns with individual coordinate frames fO1g and fO2g. It is necessary to differentiate
between the two patterns. To this end, Aruco markers37 are printed in the left upper corner
of each plane. The markers allow for a distinct and robust marker detection [Fig. 1(b, 1)], which
permits the masking of everything except for the associated plane data [Fig. 1(b, 2–3)]. After
approximate plane detection, the circle markers are identified by a detection algorithm, and the
image-plane-correspondences are obtained [Fig. 1(b, 4)].

It is important to notice that at this point, the correspondences of both planes are given in the
two individual coordinate frames fO1g and fO2g. There is no information on the rigid body
transformation which allows for a marker point formulation in a single coordinate frame. The z
coordinate for all detected features—independently of the chosen plane—is zero. The necessary
transformation will be estimated in the subsequent calibration routine. The advantage is that
single planes with individual marker coordinate frames are easier to manufacture than a single
3-D calibration target.

3.2 Start Value Determination

3.2.1 Tomasi–Kanade algorithm

The factorization algorithm by Tomasi and Kanade26 is used to reconstruct 3-D coordinates in
affine space based on at least four point correspondences over i affine camera images. There is no
need for a calibrated camera, or known distances between the corresponding points in the differ-
ent camera views. The obtained 3-D data is reconstructed up to scale.

The approach was originally introduced in order to obtain shape information from affine
image streams but can also be applied if not the camera, but the object itself is moved relatively
to the camera. The camera projection matrices cMT1;i (that project a point from the 3-D frame
fT1g onto the 2-D frame of the camera sensor), the translational part cpi, and the 3-D points T1

Xj

can be obtained by minimizing cost function ec:

EQ-TARGET;temp:intralink-;e006;116;166ec ¼
Xm
i¼1

Xn
j¼1

kcuij − cûijk2 ¼
Xm
i¼1

Xn
j¼1

kcuij − ðcMT1;iT1
X

j
þ cpiÞk2; (6)

w.r.t. cMT1;i, cpi, and T1
Xj. kcuij − cûijk is the geometric error with cûij as point projection

based on the optimized model parameters. i is the number of recorded object poses and j is
the number of point correspondences. To reduce the number of parameters, the pixel data are
centered by the centroid cωi ¼ cðωx;ωyÞTi ¼ cð1n

P
n
j¼1 cuj;

1
n

P
n
j¼1 cvjÞTi of the corresponding

id1

id2

1 2

3 4

{O }1

(a) (b)

{O }2

y

x

y

x

Fig. 1 (a) Layout of calibration target with two individual coordinate systems fO1g and fO2g.
(b) Detection procedure. Based on the detected Aruco markers [(id1) and (id2) dots, (b, 1)], the
regions of interest (ROI) for each plane are determined (b, 2). The ROIs allow for a planewise
masking (b, 3) and dot marker detection [green and red, respectively, (b, 4)].
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image points according to cucentr;i ¼ cui − cωi, which yields w.r.t. the new centered data cpi ¼ 0
and therefore

EQ-TARGET;temp:intralink-;e007;116;711ec ¼
Xm
i¼1

Xn
j¼1

kcucentr;ij − cMT1;iT1
X

j
k2: (7)

As the point correspondences are corrupted by noise, a solution for cMT1;i and T1
Xj can only

be approximated. By introducing a measurement matrix W, Eq. (7) is reformulated with the
Frobenius norm as

EQ-TARGET;temp:intralink-;e008;116;632ec ¼ kW − M̂X̂1k2F; (8)
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X1 · · · T1
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Measurement matrix W holds the centered pixel information cucentr;ij. The motion matrix M̂
holds m projection matrices cMT1;i ¼ ðcmT1;i1;

cmT1;i2ÞT , whereas first rows cmT1;i1 and second

rows cmT1;i2 are sorted according to the definition of M̂. The shape matrix X̂1 holds n recon-
structed 3-D points. Index 1 indicates the first version of the shape matrix, prior to further
transformations.

M̂ and X̂1 can be obtained by a singular value decomposition (SVD) of W [refer to Ref. 26
(p. 141) and Ref. 15 (p. 438) for more detailed information on the decomposition]. Until now, the
3-D data are only reconstructed in affine space.

Due to affine ambiguity, motion and shape matrix are not reconstructed uniquely. An arbi-

trary matrixQ can be introduced into Ŵ ¼ M̂ X̂1 ¼ M̂QQ−1X̂1, without changing the resulting

measurement matrix estimation Ŵ.

The reconstructed affine 3-D data X̂1 can be upgraded to Euclidean space, if appropriate
metric constraints are imposed upon the motion matrix. To this end, different approaches have
been presented, depending on the type of affine camera model.27 Tomasi and Kanade hypoth-
esized a simple orthographic projection, with a fixed scaling factor of one for each camera view
and no additional skew factor. Although the introduced camera model according to Eq. (1) con-
siders skew and a data scaling larger than one (e.g., as expressed by m

sx
), the approach by Tomasi–

Kanade is suitable. In the parameter refinement step, nonzero skew is allowed, as well as arbi-
trary magnification values. The constraints of the orthographic model yield matrix Q, which is

used to transform the 3-D points X̂1 from affine to Euclidean space according to

EQ-TARGET;temp:intralink-;e009;116;201X̂2 ¼ ½ T2
X1 · · · T2

Xn � ¼ Q−1X̂1: (9)

The transformation by matrix Q requires the definition of a new coordinate frame fT2g. The
transformed 3-D points X̂1 now only differ from the absolute metric points by a scaling factor
(except for potential skew and assuming the same scaling in x and y directions), as so far no
ground truth information with known metric positions was used to recover the exact object
scaling.

The transformed motion matrix R̂ ¼ M̂Q holds the data on the truncated rotation matrices for
each camera view. The truncated rotation matrix for the i’th camera view cR̃T2;i can be obtained

from R̂ by resorting the row entries according to
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EQ-TARGET;temp:intralink-;e010;116;735

cR̃T2;i ¼
�
crT2;i1
crT2;i2

�
; with i ¼ 1; : : : ; m: (10)

The metric constraints for the orthographic model are stated in Ref. 26. Additional informa-
tion on Euclidean upgrading for affine cameras can be found in Refs. 27, 33 (p. 167), and 41.

3.2.2 Scaling factor and telecentric magnification

In order to obtain the metric calibration marker coordinates in 3-D, the data scaling has to be
determined. This is achieved using ground truth information in terms of the 2-D marker distance
on the planes. The relationship between the 3-D points in fT2g and the 2-D points in fO1g of the
first plane can be formulated by an affine transformation matrix T2AO1

according to

EQ-TARGET;temp:intralink-;e011;116;588T2
Xk;h ¼ T2AO1O1

Xl1;h ¼

2
664
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
0 0 0 1

3
775
O1

Xl1;h; with k ¼ l1 ¼ 1; : : : ; n1: (11)

The point data are defined in homogeneous coordinates. Index k only addresses points that
correspond to the first plane, n1 is the total number of detected points on the first plane.

The 12 parameters of the affine matrix are estimated using the method of least squares (e.g.,
as given in Ref. 42), and the known data sets T2

X
k;h

and O1
X

l1;h
. The z coordinate of O1

X
l1;h

is

zero (degenerate input), the least squares optimization will not provide a solution for the param-
eters a13, a23, and a33. This is not a problem, as not all parameters need to be known in order to
determine the scaling factor s. It can be directly obtained from vector ða11; a21; a31ÞT by cal-
culating its Euclidean length. It is also possible to obtain s from vector ða12; a22; a32ÞT, as the
scaling in x and y directions is approximately equal (square pixel, zero skew assumption with
ρ ¼ 90 deg). This is due to the data input. Basically, a similarity transformation (rigid body
transformation and scaling) with seven parameters is enough to parametrize the transformation
between T2

X
k;h

and O1
X

l1;h
. Therefore, the average of both s-values is used.

Once s is determined, a scaling matrix can be defined according to S ¼ sI with I as identity
matrix. The metric 3-D points of the calibration target are now obtained as

EQ-TARGET;temp:intralink-;e012;116;344X̂3 ¼ S−1X̂2: (12)

Some remarks on the estimation of scaling factor s:

• As the points T2
X

k;h
are more or less exactly defined on a plane, it is possible to transform

them into a 2-D coordinate system with z ¼ 0. This allows to estimate a full 2-D affine
transformation (no degeneracy) and to derive s.

• It is also possible to use the point data of the second calibration plane to obtain the scaling
factor.

• The scaling matrix S is not applied upon the motion matrix M̂. The requirement of Ŵ ¼
M̂SS−1X̂2 is met by introducing the truncated rigid body matrices T̃i for each pose and the
camera matrix K into the equation (cf. Sec. 3.2.4).

3.2.3 Estimation of rigid body transformation between calibration planes

In order to provide a start value for the rigid body transformation O1TO2
(cf. Fig. 2), the trans-

formations T2TO1
and T2TO2

between the plane data and the reconstructed 3-D calibration points
have to be estimated. The relationship between the points is given as

EQ-TARGET;temp:intralink-;e013;116;125T2
Xk;h ¼ T2TO1O1

X
l1;h

; with k ¼ l1 ¼ 1; : : : ; n1; (13)

EQ-TARGET;temp:intralink-;e014;116;79T2
X

k;h
¼ T2TO2O2

X
l2;h

; with

�
k ¼ n1 þ 1; : : : ; n
l2 ¼ 1; : : : ; n2

: (14)
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T2
X

k;h
is considered to be scaled according to Eq. (12)—resulting in a metric point cloud—

without introducing an additional index indicating scaling. In accordance with the previous sec-
tion, the total number of calibration points is n ¼ n1 þ n2. The number of points on the first
plane is n1 and on the second plane n2.

The rigid body transformations T2TO1
and T2TO2

are obtained by an SVD (e.g., as given in
Ref. 43), since T2

X
k;h

and the corresponding calibration plane points O1
X

l1;h
and O2

X
l2;h

are known.
The desired transformation is then determined according to

EQ-TARGET;temp:intralink-;e015;116;478

O1TO2
¼ ðT2TO1

Þ−1T2TO2
¼ O1TT2

T2TO2
: (15)

3.2.4 Determination of initial camera matrix and truncated rigid body
transformations

The scaling factor s according to Sec. 3.2.2 can directly be entered into the camera matrix, if the
skew factor is supposed to be close to zero (s ≈ m

sx
≈ m

sy
). As aforementioned, the origin of the

image coordinate system is fixed to the middle of the camera sensor. The initial camera matrix is
therefore

EQ-TARGET;temp:intralink-;e016;116;351K ¼
2
4 s 0 w∕2
0 s h∕2
0 0 1

3
5: (16)

The ð2 × 3Þ-truncated rotation matrices CR̃T2;i need to be extended to ð3 × 4Þ-truncated trans-
formation matrices CT̃T2;i, as a formulation according to Eq. (1) is required. (As now a scaled
projection is hypothesized with scaling factor s due to the introduction of the camera matrix, the
small index c is changed to a capital C for the extrinsics (e.g., cR̃T2;i to

CR̃T2;i) in order to differ-
entiate between the unscaled points in fCg and the scaled points on the sensor in fcg.)

The original sensor data of the i’th camera view were shifted by its centroid cωi¼c ðωx;ωyÞTi :
This shift has to be considered when CT̃T2;i is computed. Furthermore, the image coordinate
system is meant to be fixed to the sensor middle—the necessary shift by w∕2 and h∕2 has
to be considered as well. The start values for the truncated rigid body matrices can therefore
be determined according to

EQ-TARGET;temp:intralink-;e017;116;160

CT̃T2;i ¼
" r11 r12 r13 tx
r21 r22 r23 ty
0 0 0 1

#
¼

2
64 CR̃T2;i

cωx;i−w∕2
s

cωy;i−h∕2
s

0 0 0 1

3
75: (17)

As the cameras are meant to be calibrated in coordinate frame fO1g, the truncated matrices
have to transformed according to

{O }1{O }2

{T }2

TO2

O1

TO1

T2TO2

T2

Fig. 2 Rigid body transformations between the reconstructed 3-D data of the calibration target
given in fT 2g and the coordinate frames of the calibration planes fO1g and fO2g.
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EQ-TARGET;temp:intralink-;e018;116;735

CT̃O1;i ¼ CT̃T2;i
T2TO1

: (18)

T2TO1
is known from the previous section.

3.2.5 Affine mirror ambiguity

Due to the so-called mirror ambiguity of the affine projection, the reconstructed 3-D points
obtained by the Tomasi–Kanade factorization algorithm are potentially not accurate but might
be mirrored.35,36 For further clarification Fig. 3(a) is given (inspired by Ozden et al.44): a mirror
reflection of a 3-D calibration object (here defined by the points A 0B 0C 0) w.r.t. a plane, which is
in parallel to the image sensor (mirror plane), will have the same affine projection result in cam-
era 1 as the original object (ABC). (In Fig. 3, the sensor plane for camera 1 and the mirror plane
are equal.) Therefore, based on multiple views of the calibration object, two different 3-D recon-
structions are valid: the mirrored and the original and nonmirrored point cloud.

In consequence, the truncated rigid body transformations for the different camera poses
might have been estimated based on a mirrored 3-D point cloud. Both camera poses according
to Fig. 3(a) (cam 2′ and 2) result in the exact same image coordinates, when projecting the points
ABC or A 0B 0C 0 onto the sensor. This can be shown with help of the inhomogeneous affine
projection formulation according to Eq. (2). For the sake of simplicity, the camera matrix K
is set to the identity matrix (msx ¼ m

sy
¼ 1, cx ¼ cy ¼ 0; ρ ¼ 90 deg ), and the translational shift

is supposed to be zero (tx ¼ ty ¼ 0), yielding a simple orthographic projection according to

EQ-TARGET;temp:intralink-;e019;116;476

�
cu
cv

�
¼

�
r11 r12 r13
r21 r22 r23

�0B@ OX

OY

OZ

1
CA: (19)

If Eq. (19) is expanded by a ð3 × 3Þ mirror matrix Qmir (point reflection about xy-plane) and
its inverse, nothing is changed (as QmirQ−1

mir ¼ I), yielding

EQ-TARGET;temp:intralink-;e020;116;386

�
cu
cv

�
¼

�
r11 r12 r13
r21 r22 r23

�24 1 0 0

0 1 0

0 0 −1

3
5
2
4 1 0 0

0 1 0

0 0 −1

3
5
0
@ OX

OY

OZ

1
A

¼
�
r11 r12 −r13
r21 r22 −r23

�0@ OX

OY
−OZ

1
A: (20)

In consequence, object point OX is mirrored, and the r13 and r23 components of the truncated
matrix are changed in sign [cf. Ref. 36 (p. 7–8)]. Still, OX is imaged onto the same sensor coor-
dinates, as (exemplary given for cu)

mirror 
plane

A

B

C

C'

B'

A'

cam 1

cam 2'

cam 2

mirror
plane

(a) (b)

{O }1

{O }2

{O }2,mir

TO2,mir

O1

TO2

O1

Fig. 3 Mirror ambiguity of affine projection. (a) Principle outline (based on Ref. 44). The optical
axes are indicated by black arrows. (b) Transformations between mirrored and original point
clouds for the calibration target.
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EQ-TARGET;temp:intralink-;e021;116;735cu ¼ r11 · OX þ r12 · OY þ r13 · OZ ¼ r11 · OX þ r12 · OY þ ð−r13Þ · ð−OZÞ: (21)

Therefore, two mathematically equal solutions exist (global minima; in the scope of this
paper, the term global minimum stands for a solution with realistic camera intrinsics, but which
potentially differs from the physically correct pose estimate due to mirror ambiguity. It is used in
distinction to a local minimum, which corresponds to a solution with physically unrealistic
intrinsic estimates.), when camera poses (in terms of truncated rigid body matrices CT̃O1;i) and
the shape of the calibration target (in terms of O1TO2

) are estimated—one corresponds to the
mirrored, the other to the nonmirrored solution.

Ayaw–pitch–roll decomposition of O1TO2
with rotation angles α, β, and γ can help to identify

whether a mirrored scenario is present or not. In case of a mirrored scenario, the transformation is
based on the mirrored coordinate system fO2;mirg and not on the nonmirrored system fO2g [cf.
Fig. 3(b)], resulting in a different yaw–pitch–roll decomposition: α and γ differ in sign.

In summary, in case of an erroneous, mirror-based start value determination, an elementwise
sign correction is mandatory for O1TO2

and CT̃O1;i, with help of corrective matrix Tmir

EQ-TARGET;temp:intralink-;e022;116;549Tmir ¼

2
664

1 1 −1 1

1 1 −1 1

−1 −1 1 −1
1 1 1 1

3
775: (22)

The elementwise sign correction is realized by the Hadamard product (symbol ∘) according to

EQ-TARGET;temp:intralink-;e023;116;467

CT̃O1;i ¼ CT̃O1;mir;i ∘ Tmir; ½3;row�; (23)

EQ-TARGET;temp:intralink-;e024;116;422

O1TO2
¼ O1TO2;mir ∘ Tmir: (24)

Additional information on the necessary matrix correction is given by Shimshoni et al.32

3.3 Nonlinear Parameter Refinement

Once the start parameters for both cameras are determined, a nonlinear refinement is executed
based on a Levenberg–Marquardt optimization by minimizing

EQ-TARGET;temp:intralink-;e025;116;336estereo ¼
Xmc1

i¼1

�Xnc1
j¼1

kc1uij − c1
ûijk2

�
þ
Xmc2

i¼1

�Xnc2
j¼1

kc2uij − c2 ûijk2
�
; (25)

with

EQ-TARGET;temp:intralink-;sec3.3;116;272

c1 ûij ¼ f1½K1; k1;
C1 T̃O1;i;XO1;jðO1TO2

Þ�;
c2 ûij ¼ f2½K2; k2;

C2 T̃O1;i;XO1;jðO1TO2
Þ�:

To differentiate between the two stereo cameras, indexes c (and C) are extended to c1 and c2
(C1 and C2), respectively, whereas the other parameters are distinguished by indices 1 or 2 (e.g.,
k1 as the first camera’s distortion coefficients). As the number of correspondences and of cap-
tured poses per camera might differ, camera-specific numbers are defined by nc1 or nc2 (cor-
respondences) and mc1 or mc2 (poses), respectively. estereo is the sum of the squared geometric
errors between the matched feature points c1uij (or c2uij) and the corresponding projected points

c1 ûij (or c2 ûij) (based on the estimated model). The mean absolute projection error eabs;mean is

given in pixel and is defined in the camera sensor coordinate frames fc1g and fc2g, respectively,
and defined as (here given for the first camera)
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EQ-TARGET;temp:intralink-;e026;116;735eabs;mean ¼
Pmc1

i¼1

Pnc1
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc1uij − c1

ûijÞ2 þ ðc1vij − c1
v̂ijÞ2

q
mc1 · nc1

: (26)

The camera matrices K1 and K2 (three parameters per camera), the distortion vectors k1
and k2 (four parameters per camera), the truncated rigid body transformations C1T̃O1;i and
C2T̃O1;i (five parameters per view and camera, the Rodrigues’ formula is used to express the
rotation), and the rigid body transformation O1TO2

(six parameters, coupling the errors of
camera one and two) are optimized simultaneously, resulting in a total number of 2 · 3þ 2 · 4þ
5 · ðmc1 þmc2Þ þ 6 ¼ 20þ 10 · m parameter, if m ¼ mc1 ¼ mc2 .

It should be noted, that a large difference between the camera pose number and/or marker
number can result in an unequal weighting of the cameras’ relevance in the optimization.
Therefore, it is required that mc1 ≈mc2 and nc1 ≈ nc2 . Otherwise an appropriate error weighting
approach should be introduced.

4 Experiment

In this section, an exemplary calibration result is presented. To this end, the hardware setup is
introduced, along with the calibration target. The calibration result is analyzed with help of plau-
sibility tests, comparing the estimated camera intrinsics and setup extrinsics to data sheet values
and experimental boundary conditions.

Finally, the marker locations of the calibration target are triangulated based on the sensor
calibration result.

4.1 Hardware Setup: Sensor and Calibration Target

The structured light sensor is shown in Fig. 4(a), comprising two monochromatic cameras
(Allied Vision Manta G-895B POE) with telecentric lenses (Opto Engineering
TCDP23C4MC096 with modified aperture) and a projector with entocentric lens (Wintech
Pro4500 based on Texas Instrument’s DLP LightCrafter 4500). The projector is only used
as feature generator, not used in the calibration routine and is therefore not addressed in this
section.

The telecentric lenses allow for the application of two cameras per lens, offering different
magnification values. In the present scenario, the magnification m ¼ 0.093 is used, theoretically
offering an FOV of ∼152.54 mm by 80.72 mm, when used with a 1 in CMOS sensor with a
resolution of 4112 pixel by 2176 pixel and a pixel size of 3.45 μm. The hardware configuration
results in a pixel size on object side of ∼37 μm. The sensor is not completely illuminated, as the
lens offers a smaller aperture. The lenses’ DOF is ∼50 mm, the telecentric range is smaller
(about 20 mm), and the working distance is 278.6 mm according to the data sheet. The triangu-
lation angle is manually adjusted to ∼45 deg.

The calibration target is shown in Fig. 4(b). The target’s basis is formed by a stiff cardboard
structure, forming a roof. Two simple planar plastic tiles with circle pattern are fixed on the

(a) (b)

Entocentric 
projector

Telecentric stereo
camera pair

Aruco marker

Adhesive foil
with printed pattern
on 2-D plane

Cardboard

{O }1{O }2

Fig. 4 (a) Structured light sensor with telecentric stereo camera pair and entocentric projector as
feature generator. (b) Experimental calibration target.
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rooftop sides with double-faced adhesive tape. The target patterns are printed onto an adhesive
foil on a standard ink-jet printer and are adhered to the tiles. The dot marker pitch is 3 mm and the
diameter is 2.25 mm.

4.2 Calibration Results

The calibration target is captured in different poses (at least three poses per camera). It is not
mandatory that both cameras acquire all images based on the exact same target poses as long as
at least one image pair of the same pose exists. This image pair is necessary as it will be used to
define the measurement coordinate system based on fO1g. In the present scenario, mc1 ¼ 11

poses are captured for the first and mc2 ¼ 13 for the second camera. The marker number for
camera one is nc1 ¼ 282 per pose, and for camera two nc2 ¼ 281 per pose. In consequence,
an unequal error balancing due to a large difference in point correspondences can be excluded,
but nevertheless should be checked by comparing the individual mean absolute projection error
per camera. The first target pose is equal and captured by both cameras, being basis for the
measurement coordinate system. The start values for the nonlinear refinement are determined
for each camera independently.

4.2.1 Scenario one: no start value correction

In the first scenario, the necessity of a potential start value correction is not monitored. Hereby,
the effect of erroneous start values on the nonlinear refinement is meant to be illustrated. The
corresponding calibration result is given in Fig. 5. The start values are listed in the left column,
the refinement result in the right column. For the sake of readability and brevity, only exemplary
parameters are given.

O1TO2
is estimated independently for both cameras in the start value determination and should

be ideally equal, as the target geometry is not changed in between the image acquisition for both
cameras. A comparison of O1TO2;1 and

O1TO2;2 shows a difference in sign [cf. to red (dot underline)
and blue (wave underline) boxed values in Fig. 5]. It follows that O1TO2;1 ≈

O1TO2;2 ∘ Tmir, indi-
cating that a mirrored point cloud either for the first or second camera was used to estimate the start
values. (The approximately equal sign is used here, as a simple sign correction does only ideally
result in the samematrices. Even in case of nonmirrored conditions, the different experimental data
sets for both cameras result in slightly different matrix entries.) In the present scenario, the first
camera’s point cloud is mirrored, which can be concluded from a yaw–pitch–roll decomposition
(cf. Sec. 3.2.5). The nonlinear refinement based on Eq. (25) requires the choice of a single O1TO2

—
either O1TO2;1 or

O1TO2;2. This leads to large deviations when starting the optimization, as either the

Fig. 5 Calibration result for exemplary parameters for scenario one. The start values for the first
camera are estimated based on a mirrored point cloud and not corrected. O1TO2;1 is used as start
value for the stereo optimization.
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C1T̃O1;i or
C2 T̃O1;i matrices do not fit to the chosen calibration target shape in terms of O1TO2

. If
O1TO2;1 is selected (mirrored point cloud), the refinement results according to Fig. 5 are obtained.
In this case, the nonlinear refinement starts with a mean projection error of 36.04 pixel.

A direct comparison of all start and refined values shows no great difference for the chosen
parameters but reveals a change in sign for the truncated rigid body transformation C2 T̃O1

for the
first target pose [cf. to black (solid underline) boxed values in Fig. 5]. This change in sign hap-
pens also for all other target poses and matrices C2 T̃O1;i, whereas the erroneously chosen start
value O1TO2;1 does only slightly change in the optimization procedure and the critical signs do
not change at all [cf. to red (dot underline) and green (dash underline) boxed values in Fig. 5].
The only way to reduce the projection error (if O1TO2;1 is not changing) is therefore the adaption
of the second camera’s locations in relation to the target, now in conformance with the mirrored
point cloud. This is why the truncated matrices C2T̃O1;i change in sign [cf. Sec. 3.2.5, Eq. (20)].

Still, the resulting projection errors eabs;mean;1 and eabs;mean;2 are with about 0.28 pixel
low (corresponds to ∼10 μm on object side). Also, the similar error results for both cameras
indicate a balanced weighting of the cameras’ relevance in the nonlinear optimization. An
analysis of the error histogram (not shown here) indicates a good model fitting and allows the
conclusion that the optimizer converged into the desired minimum. This assumption is fur-
ther supported as also the estimated lens magnification is consistent with the data sheet value
of 0.093. The calibrated magnification can be obtained with help of the scaling factor s and
the pixel size sx, resulting in m ¼ s · sx ¼ 27.063 px

mm
· 0.00345 mm

px
¼ 0.09336.

In this scenario, the minimum with erroneous signs is estimated and the mirror ambiguity
problem not resolved (according to the results in Fig. 5). (According to Sec. 3.2.5, there are two
mathematically equivalent minimum: one for a mirrored and one for the correct, nonmirrored
sensor arrangement, just differing in signs.) The r13 and r23 components of C2T̃O1

change during
parameter refinement (from mirrored to nonmirrored), resulting in a erroneous camera pose esti-
mation [as outlined in Fig. 3(a) (cam 2′, instead 2)]. This is due to the choice of the mirrored
target point cloud as start value in terms of O1TO2;1 and the absence of a sign change during
refinement (cf. to O1TO2;1 in Fig. 5: r13, r23, r31, r32, tz do not change in sign). In consequence,
a mirrored sensor arrangement is estimated, and all following measurements will result in mir-
rored point clouds.

If O1TO2;2 is chosen as start value (describing a nonmirrored calibration point cloud), the
initial mean projection error is higher (111.70 pixel). The optimizer is not converging toward
a global minimum, and the routine is aborted with a mean absolute projection error of about
13 pixel. This was not to be expected, as also in this case a sign adaption (in this case, for the
matrices Ci T̃O1;i) would result in a global minimum; this time even for the accurate sensor
arrangement. The result indicates a basic problem when ignoring affine mirror ambiguity.
The necessary sign adaption is not always successful.

4.2.2 Scenario two: start value correction

In the second scenario, Tmir is used to correct the start values of the first camera. The corre-
sponding calibration result is given in Fig. 6 and extended by the distortion parameters for the
first camera. The result is obtained when using the corrected O1TO2;1 as start value, resulting in an
initial mean projection error of 0.75 pixel, around 35 pixel lower than in the uncorrected
scenario.

Now not only the absolute values of O1TO2;1 and
O1TO2;2 are similar but also possess the same

signs [cf. to red (dotted underline), blue (wavy underline), and green (dashed underline) boxed
values in Fig. 6] even after refinement. (Just the sign of the y value is changing but is very close
to zero. This change is not connected to the mirror effect). The same applies to the truncated
matrices C1 T̃O1;i and

C2 T̃O1;i; the critical signs do not change in the refinement procedure, mean-
ing that the start values of both cameras have been successfully combined.

The error histogram for the second camera is shown in Fig. 7(a). The error is approximately
normally distributed for the v direction, whereas the u direction deviates from a normal
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distribution. The reason for this cannot be assessed conclusively but could be due to a slightly
biased target pose distribution.

Altogether, error distribution and mean absolute projection errors are equal to the previous
scenario without correction, which is comprehensible due to mathematical equivalence of mir-
rored and nonmirrored solution. This mathematical equivalence should not be confused with a
physical equivalence. The determined parameters in the noncorrected scenario are false in sign.

In addition, the lens distortion for the first camera is shown in Fig. 7(b). The telecentric lens
does not allow for a complete sensor illumination, resulting in masked areas near the right and
left sensor boundaries. This is why the displayed sensor area is reduced by about 500 pixel from
the sides. Altogether, the lens distortion is relatively low, as the distortion model introduces a
pixel correction distinctly below 0.4 pixel for the greater part of the sensor. Even lower corrective
effect is introduced by the distortion model for the first lens, confirming the assumption of low
distortion generated by high quality telecentric lenses.

Noteworthy is also the matrix entry (1,1) of C2R̃O1;1 [as part of the start value of C2 T̃O1;1,
indicated by single black (solid underline) box], as it results in a deviation to an orthonormal
basis. This might be due to numerical inaccuracies when performing the Euclidean upgrade but
apparently had no effect on the parameter refinement in the next step, as the refined matrix
represents an orthonormal basis.

The plausibility of the optimized rigid body transformation O1TO2
(here in terms of O1TO2;1)

is evaluated by analyzing the angles between the axes of the two coordinate systems fO1g and
fO2g. As the second orthonormal basis of the refined rotation matrix O1RO2;1 (as part of

O1TO2;1)
is nearly ð5.463 × 10−3; 0.99998;−4.422 × 10−3ÞT ≈ ð0;1; 0ÞT, the angle between the y axis of
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Fig. 7 (a) Error histogram for the second camera. (b) Distortion model for the first camera: only the
illuminated sensor area is depicted. The corresponding distortion coefficients k1 are given in Fig. 6.

Fig. 6 Calibration result for exemplary parameters for scenario two. The start values for the first
camera are estimated based on a mirrored point cloud but are corrected by Tmir. O1TO2;1 is used as
start value for the stereo optimization.
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fO1g and fO2g is approximately zero. This is in good agreement with the obvious orientation of
the two planes in Fig. 4(b), in which the y axes are nearly in parallel. The angles between both x
and z axes are approximately equal and about 42.80 deg (obtained by scalar product between
corresponding orthonormal bases). This is again in agreement with the previous result, as the
rotation in order to transfer fO1g to fO2g is performed around the y axis.

The triangulation angle between the cameras has been manually set to 45 deg and is validated
by calculating the angle between the sensors’ normal axes based on the calibration result. To this
end, the third orthonormal bases of C1T̃O2

and C2 T̃O2
are calculated. The procedure is exemplary

given for the first camera. The cross product of C1
r1 and C1

r
2
yields C1

r3. The triangulation angle
θ is calculated based on the scalar product of C1

r
3
and C2

r
3
, resulting in an angle of 46.425 deg.

This is in good agreement with the roughly measured value of 45 deg.
Altogether, postulated model and experiment are in good agreement. If O1TO2;2 of the second

camera is used as start value, the initial mean projection error is even a bit lower (0.72 pixel).

4.3 Plausibility Test: Triangulation Result

The 3-D coordinates of the calibration target are triangulated in coordinate system fO1g of the
first target pose. An analysis of the camera specific projection errors for this measurement pose
helps to eliminate the possibility, that it deviates strongly from the mean errors and represents an
outlier pose. As this is not the case, it is used for triangulation. The point correspondences (in
pixel) are used to reconstruct the target points according to (e.g., cf. Ref. 6):

EQ-TARGET;temp:intralink-;e027;116;308

�
c1MO1
c2MO1

�
O1
X ¼

�
c1u − c1p
c2u − c2p

�
: (27)

The affine projection matrices—for the image pair defining the measurement system—are
obtained by combining the camera matrices with the truncated rigid body transformations
according to Eq. (3). c1u and c2u are the undistorted pixel correspondences of both cameras.

O1
X is calculated by the least squares method, as Eq. (27) is overdetermined. The triangulation

result is given in Fig. 8. For each plane, the standard deviation σ and the maximum deviation
Δzmax are given based on an individual plane fitting. The result implies a satisfactory planarity.

Furthermore, the rooftop angle δ ¼ 137.18 deg is depicted, obtained by the angle between
the two plane fits, resulting in an angle of 180 deg−137.18 deg ¼ 42.82 deg between the
planes’ normal vectors. This is in accordance with the previous angle analysis, where an angle
of 42.80 deg was calculated between the planes’ z axes.

5 Conclusion

In this paper, a robust and direct calibration routine for a structured light sensor with telecentric
stereo camera pair is proposed. The routine combines an affine autocalibration approach with a
nonlinear parameter refinement based on a Levenberg–Marquardt optimization. The used low-

(a) (b)
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 = 4.4 µm1

z  = 16.8 µmmax,2

Fig. 8 Triangulated 3-D coordinates of calibration target in coordinate frame fO1g of first target
pose: (a) lateral view, xy plane and (b) top view, xz plane.
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cost 3-D calibration target combines two 2-D planes with metric distance information and makes
an additional camera magnification determination dispensable. This reduces the calibration
effort. The problem of affine mirror ambiguity is theoretically addressed and solved by analyzing
the rigid body transformation between the two 2-D target planes and by introducing a correction
matrix. Moreover, radial-tangential lens distortion is considered to allow for a more accurate
camera model. A representative data base for optimization is provided by acquiring individual
target poses for each camera.

Provided a nondegenerate and sufficient number of target poses is acquired for each camera
(here at least three, with at least one image pair defining the measurement coordinate frame),
the following general conclusions can be derived: if the start value determination is coinciden-
tally based on a mirrored calibration point cloud for both cameras, the nonlinear optimization
will converge robustly, but based on a mirrored sensor arrangement, resulting in mirrored tri-
angulated point clouds. If the start parameters for only one camera are affected by mirror ambi-
guity, the subsequent nonlinear optimization not necessarily converges (cf. Sec. 4.2.1), as the
outcome depends on the selected start value for O1TO2

.
The monitoring of O1TO2

via yaw–pitch–roll decomposition allows for the detection of a
potential point cloud mirroring. The correction of affected start values by the introduced matrix
Tmir guarantees a rapid optimization convergence, independently of the choice of O1TO2

.
Moreover, the initial projection error is smaller. In consequence, the triangulated results are
always defined accurately and not mirrored. The obtained experimental results verify the effec-
tiveness of the proposed approach.

In the present version of the calibration approach, due to the start value determination by the
factorization algorithm, the detected target features must be visible in all views of a single cam-
era. A higher degree of flexibility could be achieved using an affine reconstruction approach,
which does not depend on this constraint (cf. Sec. 1.2). Especially, the estimation of the lens
distortion parameters could benefit from a higher number of sensor boundary points. In the
present routine, such points are more likely to be excluded from affine reconstruction, due
to limited visibility. Another approach to provide a wider data basis could be achieved by the
re-usage of former excluded points for nonlinear optimization, as the visibility constraint does
not apply here.

Moreover, the introduction of an affine analogy to the ideal image plane for perspective cam-
eras could potentially increase numerical stability, when optimizing the distortion parameters of
the lenses (cf. Sec. 2). This could become more important, if higher-order distortion coefficients
are meant to be introduced.

Also, the practicality of the suggested hardware setup is limited to measurement scenarios, in
which the required measurement volume is relatively small. This is due to the camera’s restricted
DOF, and telecentricity range, resulting in a small cross section in which an object point is in
focus, and sharply displayed on both affine sensors. A potential solution is the application of
telecentric lenses with Scheimpflug adapters (e.g., Opto Engineering TCSM096 or a comparable
product of a different manufacturer).

The telecentricity range for which an object is mapped with constant magnification onto a
sensor is smaller than the DOF. In order to use the complete DOF, it could be interesting to
introduce slightly different magnification values (and in consequence camera matrices), depend-
ing on the distance from object to lens. To this end, an accurate estimate of lens magnification
ratios for the target poses in different distances would be needed. This could be achieved
by introducing other metric constraints for the Euclidean upgrade, based on the so-called
scaled-orthographic model (e.g., as given in Ref. 41, p. 217), instead of the orthographic model.
The introduction of additional parameters could affect the stability of the nonlinear optimization
routine, which therefore needs to be analyzed. Also, point data triangulation would become more
costly, as a first rough point cloud reconstruction would be required, in order to judge which
magnification value to use in a second, more accurate triangulation step.

A final remark on the potential of the scaled-orthographic model: The model allows for an
image dependent modeling of scaling. It is therefore thinkable to apply the start value determi-
nation via factorization algorithm on the complete pose data set captured by both cameras, and
still obtain camera specific start values for magnification. The advantage would be a fitting start
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value data set for nonlinear optimization, as it would either depend on a mirrored or nonmirrored
point cloud. Still, a check for affine mirror ambiguity and potential correction would be neces-
sary in order to avoid the optimization of an inverse sensor setup. Also, if more than one stereo
image is captured, the errors of camera one and camera two could be further coupled for these
specific poses, as in this case the rigid body transformation between the cameras is constant
(defining the stereo rig). Hereby, the advantages of the stereo image based approach by Liu
et al.12 could be combined with the presented method.
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