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Abstract. Four different methods for calculating the radial profile of the Fourier transform of a
circularly symmetric function are discussed and evaluated. Applications to optics, in which the
circularly symmetric function represents the distribution of field across a circular aperture, are
many. The four approaches include: (1) numerical integration of the zero-order Hankel transform
equation (using the Gauss–Kronrod method); (2) extraction of the radial profile of a two-
dimensional Fourier transform; (3) the projection-transform method that makes use of the pro-
jection-slice theorem of Fourier analysis; and (4) the quasifast Hankel transform introduced by
Siegman. The results indicate that the projection-transform method is the fastest method and that
it has accuracy that is second only to numerical integration. © 2020 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.59.8.083105]
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1 Introduction

The purpose of this paper is to explore methods for fast calculation of Fourier transforms of two-
dimensional (2-D) functions with circular symmetry. It comes as no surprise that taking advan-
tage of symmetries should potentially speed up such calculations. While existing programs such
as MATLAB and Mathematica can calculate Fourier transforms rather quickly, speedups could
be helpful in many programs that use iterative methods involving a Fourier transform on each
pass. Examples include resonator calculations, phase retrieval calculations, computer-generated
phase-only hologram design, as well as others. We explore and compare the calculation speeds of
several different methods that exploit circular symmetry.

Throughout we will be using Fourier and inverse Fourier transforms defined as
EQ-TARGET;temp:intralink-;e001;116;299

Gðνx; νyÞ ¼
ZZ

∞

−∞
gðx; yÞ exp½−j2πðνxxþ νyyÞ�dx dy

gðx; yÞ ¼
ZZ

∞

−∞
Gðνx; νyÞ exp½þj2πðνxxþ νyyÞ�dνx dνy: (1)

One-dimensional (1-D) versions of these transforms will also be used.
For circularly symmetric functions, the Fourier transform is also circularly symmetric. This

fact allows the transform to be characterized by what will be called a “radial profile,” which is a
central slice through the spectrum extending from the origin to some predetermined upper fre-
quency limit. For example, the zero-order Hankel transform, discussed below, calculates a radial
profile of the spectrum, valid from the origin to, in principle, an infinite limit of frequency. All
versions of the Fourier transform will be compared on the basis of their radial profiles, but to
some finite upper limit of frequency beyond which the values of the spectrum are not of interest.

The novelty of this study lies not in introducing new techniques, but rather in comparing
various existing techniques. We have not considered in this study methods that require
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prestorage of values of Bessel functions of various orders and various arguments. Such methods
are more user-implementation dependent and should be evaluated for both speed and accuracy.

2 Circularly Symmetric Functions in Optics

We consider only circularly symmetric functions describable by a complex-valued function of

radius gðrÞ, where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. In optics, the cases in which circularly symmetric functions

are encountered are plentiful. Circular symmetry is often found in sources, lenses, and exit
pupils. Note that the circularly symmetric function can contain both circularly symmetric
attenuations and circularly symmetric phases. Calculation of focal plane distributions for
circular-symmetric systems with spherical aberration and focusing errors satisfies the circularly
symmetric constraint. Calculation of Fraunhofer and Fresnel diffraction patterns of circularly
symmetric apertures requires Fourier transforms of circularly symmetric functions. In what fol-
lows, we examine four different approaches to calculating the Fourier transforms of such func-
tions, and ultimately compare their computational complexities, error properties, and speed in a
specific example.

3 Background on the Methods

3.1 Integration of the Zero-Order Hankel Transform Equation

The traditional method for finding the radial profile of the Fourier spectrum of a circularly sym-
metric function is by means of the zero-order Hankel transform. Let gðrÞ again represent the
radial profile of the aperture function and GðρÞ the radial profile of its circularly symmetric
Fourier spectrum. Then

EQ-TARGET;temp:intralink-;e002;116;419GðρÞ ¼ 2π

Z
∞

0

rgðrÞJ0ð2πrρÞdr; (2)

where J0ðxÞ is the zero-order Bessel function of the first kind. In some cases, this integral can be
directly evaluated by a symbolic integration program, yielding an analytic solution. In others,
numerical integration can be used to obtain a highly accurate result. Both of these methods are
relatively slow when compared with methods based on FFTs. However, we take these results as
the gold standard against which the errors associated with other methods are measured.

3.2 Direct 2-D Fourier Transform

It is always possible to construct a rectangular array of samples of gð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ and perform a 2-

D FFT on the array, eventually displaying a radial profile of the result by selecting half of a
proper column or row of the transform. Such an approach is straightforward. However, there
is a question to be answered that requires some experimentation. Namely, how much is it nec-
essary to pad the samples of a circular aperture with zeros in order to get adequate sampling in
the frequency domain and thereby get a reasonably accurate solution. Let M represent the num-
ber of samples along a diameter of the circular aperture on the vertical or horizontal axes, and let
N represent the total number of samples along the same direction for the padded array. The
answer to this question will be deferred to the later section on errors. The computation time
required to find the Fourier transform of the circular aperture is the time required for an N ×
N FFT. Such a computation requires 2N2 log2 N complex multiplies and 2N2 complex additions.

3.3 Projection-Transform Method

The projection-slice theorem of Fourier analysis states that a projection through a 2-D function
gðx; yÞ onto an axis at angle þθ with respect to the x axis has a 1-D Fourier transform that is a
slice through the 2-D spectrum G of g along an central axis at angle þθ to the νx axis in the
frequency domain. Note that for a circularly symmetric function, projections in all directions are
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the same, so any one projection direction contains all the needed information. A final 1-D Fourier
transform of the padded projection then yields a slice through the 2-D spectrum, from which the
radial profile of the circularly symmetric spectrum is known.

The origin of the projection-transform method for finding Fourier transforms of circularly
symmetric functions appears to lie with the work of Bracewell in 1956,1 but the method was
introduced to the signal processing community by Oppenheim et al., in 19782 (see also Refs. 3
and 4). The latter works apply to evaluation of Hankel transforms of any order, but here only the
zero-order transform is of interest due to the assumption of circular symmetry.

Suppose that a circularly symmetric function containing variations of amplitude and/or phase
is sampled in an M ×M rectilinear grid. If M again represents the number of samples along a
diameter of the circular aperture on the horizontal or vertical axes, projections onto such axes
require summations of M samples down each of M columns (or across each of M rows), for a
total ofM2 complex additions. It is possible to perform column summations for only those sam-
ple points that lie within the aperture, rather than in a fullM ×M rectangular array, but this only
reduces the number of samples by a factor of about π∕4, the ratio of the area of a circle of
diameter b to the area of a square of side b. The 1-D Fourier transform is carried out by an
FFT, but padding of the projection sequence with zeros is necessary to sample the transform
closely enough to yield accurate results. Exactly how much padding is needed will be discussed
in the later section on errors. The computation requires N log2 N complex multiples and N þM2

complex additions, where the term M2 arises from the projection operation.
The number of additions can be reduced further by projecting only one quarter of the circular

aperture onto the horizontal (or vertical) projection axis. This reduces the number additions to
ðM∕2Þ2 fromM2. After computing the ðM∕2Þ2 projection samples, they can be doubled in value
to complete half of the projection samples, and then that result can be reflected about the origin to
obtain the symmetrical results, thus completing the full projection sequence. Note that if this
method is used to reduce the number of additions,M should be an even number so that there are
no samples on the horizontal or vertical axes that will be counted twice. When comparing com-
putation times, the time required to fill the full projection sequence from the partial result should
be included. In later sections, we ignore this potential speedup and perform projections through
the entire square array of size M ×M.

3.4 Quasifast Hankel Transform

Siegman5 devised a method he called the quasifast Hankel Transform that can be applied here.
Siegman credited this method to Gardner et al.,6 although Agrawal and Lax7 pointed out a much
earlier use of a similar transformation. This method makes exponential substitutions for r and ρ
in Eq. (2), converting the Hankel transform to a cross-correlation integral. This method can be
applied to a Hankel transform of any order, but we focus on the zero-order transform here
because we have assumed circular symmetry. The substitutions are

EQ-TARGET;temp:intralink-;e003;116;264r ¼ r0eαx; ρ ¼ ρ0eαy; (3)

yielding a correlation integral

EQ-TARGET;temp:intralink-;e004;116;221ĜðyÞ ¼
Z

∞

−∞
ĝðxÞĵðxþ yÞdx; (4)

where ĝðxÞ ¼ r0eαxgðr0eαxÞ, ĜðyÞ ¼ ρ0eαyGðρ0eαyÞ, and the Bessel kernel becomes

EQ-TARGET;temp:intralink-;e005;116;164ĵðxÞ ¼ 2παr0ρ0eαxJ0ð2πr0ρ0eαxÞ: (5)

Wemust now discretize ĝðxÞ and ĵðxÞ in order to create a discrete convolution that can be carried
out by a series of fast Fourier transforms. One problem is evident immediately. Since the lower
limit 0 of the Hankel transform has mapped to −∞ in the correlation integral, any finite discrete
approximation to the correlation integral must have a region of zeros at and around the origin, a
region we call the “donut hole.” Agrawal and Lax7 addressed this problem by simply adding to
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the result a constant in the donut hole, the constant being the value of the Hankel transform at
zero frequency.

Uniformly spaced sampling is done in the x and y domains, necessary for FFTs to be applied
to calculating the correlation integral. Such sampling results in nonuniformly spaced samples in
the r and ρ domains. The correlation integral is calculated via a series of FFTs according to

EQ-TARGET;temp:intralink-;e006;116;675ĜðyÞ ¼ FFT−1ðFFT½ĝðyÞ� × fFFT½ĵðyÞ�g�Þ; (6)

where FFT is the forward fast Fourier transform, FFT−1 is the inverse fast Fourier transform,
and * indicates the conjugation.

Represent again the number of samples across a horizontal or vertical diameter of the circular
function byM. The question remains as to the number of samples N required in the computation.

In Siegman’s procedure, ifM∕2 samples of Ĝ are desired, ĝ is padded withM∕2 zeros to make a

length N ¼ M sequence, and ĵ is extended to an M length sequence. These length M sequences
are Fourier transformed, and only the first M∕2 samples of the correlation are retained, thus
deleting negative-frequency components that are not part of the radial profile. The total number
of complex multiplications required is therefore 3ðM log2 MÞ þM and the number of complex
additions is 3M. These measures of complexity do not include the computations required to

transform rgðrÞ into ĝðxÞ, J0ð2πρÞ into ĵðxÞ, and ĜðyÞ into GðρÞ. These coordinate transforma-
tions can take a significant fraction of the total computation time for this method, as illustrated in
a later section.

Siegman5 derives several relationships between the parameters used in this problem, based on
sampling requirements. If ρ ¼ β is the highest frequency of interest in the ρ (frequency) domain,
then the lower end truncation point r0 in the r domain, where the sample spacing is finest, should
not be larger than 1∕K1 cycles of the highest frequency β. The constant K1 should be greater than
or equal to 2 but is usually chosen to be 4 to be safe. Similarly, at the upper truncation point,
r ¼ b, the sample spacing should not be greater than 1∕K2 cycles of β, where again K2 is usually
chosen to be 4. Analogous arguments can be applied in the ρ domain, leading to a set of equa-
tions that should be satisfied in choosing the parameters for the computation:

EQ-TARGET;temp:intralink-;e007;116;384M∕2 ¼ K2βb log2ðK1βbÞ; (7)

EQ-TARGET;temp:intralink-;e008;116;341α expðαM∕2Þ ¼ K1∕K2; (8)

EQ-TARGET;temp:intralink-;e009;116;319r0ρ0 ¼ ðK2∕K2
1Þα: (9)

Given a choice for the size M of the calculation and choices for K1 and K2, Eq. (7) represents a
nonlinear equation that can be solved for βb, which is the space bandwidth product of the cal-
culation. Likewise, given choices of the same parameters, Eq. (8) defines a nonlinear equation
that can be solved for α. Finally, from Eq. (9), the product r0ρ0 can be calculated once the value
of α is known.

Figure 1 shows plots of the radial profiles obtained for three different choices of total number
of samplesM using the quasifast Hankel transform. As can be seen from these results, in all three
cases, the donut hole has a radius of about Δρ ≈ 0.1 to the right of the origin, but grows slightly
as M is reduced. The primary differences between these results are twofold. First, the gap
between the value of the result at the edge of the donut hole and the exact result at the origin
grows larger as M is reduced. Second, the maximum value of ρ for which the profile can be
plotted also grows smaller as M is reduced.

The severity of the donut-hole problem depends on how one chooses to divide up the space-
bandwidth product between the radius b of the circle in the space domain and the radius β in the
frequency plane over which one desires accurate results. Figure 2 shows the consequences of
different divisions of a constant space-bandwidth product βb between b and β. In the left column
are the “exact” results obtained from the analytic solution of the Hankel transform equation. On
the right are the results obtained by the quasifast algorithm for different choices of b and β, their
product being held constant. All other parameters of the algorithm are held constant, including
the total number of samples (M ¼ 256) in the calculation. In accord with the requirements of the

Goodman: Comparison of methods for exploiting symmetry in calculating the Fourier spectra. . .

Optical Engineering 083105-4 August 2020 • Vol. 59(8)



algorithm, the last 128 of the calculated samples are discarded. The first 128 samples are dis-
played with second-order interpolation.

The values at the origin of the analytic solution change with the value of b because the areas
of the circular apertures are changing. The Fourier transforms also become more concentrated
toward the origin as the radius in the space domain increases, as expected. The donut hole is
smallest for small b and large β but increases with increasing b and deceasing β. In the case at the
right-hand bottom of the figure, for which b ¼ 8.95 and β ¼ 1, the donut hole encompasses both
the main lobe and part of the first sidelobe off the radial profile, yielding a very poor result.

3.5 Comparison of Computational Complexities of the Above Methods

Table 1 summarizes the operation counts for three of the approaches.
From a purely theoretical point-of-view, based on the computational complexities, we see

that the 2-D FFT has the greatest computational complexity of the three FFT-based methods by
far. The projection-transform method has fewer complex multiplies and additions than the 2-D

(a)

(b)

(c)

Fig. 1 Results of calculations of the radial profiles of Fourier transforms of a uniform circular
aperture using the quasifast Hankel transform algorithm, with the following parameter values:
(a) M ¼ 256, α ¼ 0.0279, r 0 ¼ ffiffiffi

α
p

∕2, ρ0 ¼ ffiffiffi
α

p
∕2, b ¼ 1, β ¼ 8.945, K 1 ¼ K 2 ¼ 4; (b) M ¼ 128,

α ¼ 0.047, r 0 ¼ ffiffiffi
α

p
∕2, ρ0 ¼ ffiffiffi

α
p

∕2, b ¼ 1, β ¼ 5.254, K 1 ¼ K 2 ¼ 4; and (c) M ¼ 64, α ¼ 0.079,
r 0 ¼ ffiffiffi

α
p

∕2, ρ0 ¼ ffiffiffi
α

p
∕2, b ¼ 1, β ¼ 3.155, K 1 ¼ K 2 ¼ 4. The horizontal lines at 3.1416 represent

the value of the analytic profile at the origin.
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FFT. Complex multiplies take more time than complex additions, so the number of multiplies is
particularly important. Finally, the quasifast Hankel transform has the least complex multiplies
and the least complex additions. However, as mentioned previously, the computational complex-
ity cited does not include the time taken to perform the required coordinate transformations,
which can be a significant fraction of the total time required for this method. When comparing
these methods in a real example, these times will be included. Finally, the times required to
determine the parameters for this transform have been ignored, since once M, K1, and K2 are

Table 1 Numbers of complex multiplies and complex additions for three methods for computing a
frequency-domain radial profile. An array size of N × N ¼ 4M × 4M has been assumed for the 2-D
FFT case, an array length of 4M for the 1-D FFT case, and onlyM samples in the quasifast Hankel
transform approach.

Method Multiplications Additions

2-D FFT 2N2 log2 N 2N2

Projection transform N log2 N N þM2

Quasifast Hankel 3ðM log2 MÞ þM 3M

(a)

(b)

(c)

Fig. 2 Results of calculations of the radial profiles of Fourier transforms of a uniform circular aper-
ture of radius b for constant space-bandwidth product βb but a changing division between the
space factor b and the frequency factor β. The left column contains results from analytic solutions
of the Hankel transform equation for a uniform circular aperture. The right column contains the
results of the quasifast algorithm corresponding to each such result. The parameters b and β are
divided as follows: (a) b ¼ 1, β ¼ 8.95; (b) b ¼ β ¼ ffiffiffiffiffiffiffiffiffiffi

8.95
p

; and (c) b ¼ 8.95, β ¼ 1. The values of
the other parameters used are in all cases: α ¼ 0.0279484, r 0 ¼ ffiffiffi

α
p

∕2, ρ0 ¼ ffiffiffi
α

p
∕2, K 1 ¼ K 2 ¼ 4,

and M ¼ 256.
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chosen, many transforms can be performed with these same parameters. The computation times
realized in practice will depend on the computer and the software used.

Computational complexity alone does not include information about the errors or the actual
computation times associated with the various methods. We turn attention to the error properties
of these algorithms next.

4 Comparison of Absolute Errors at the Sampling Points

The total absolute errors of each of the three methods (other than numerical integration) are
assessed in this section. There are three potential sources of error. First, a major source of error
is associated with the discrete representation of a continuous circle. Note that as we increase the
number of samples representing the circle, the smaller the errors due to this source will be. Note
also that the quasifast Hankel transform does not suffer from this source of inaccuracy. A second
source of error is undersampling of the transform, with the result that the accuracy of the rep-
resentation of the transform is decreased and interpolation errors occur. In this case, it is the
padding of the discrete space-domain function that determines the spacing of the samples in
the transform domain, and therefore padding the array with a large number of zeros decreases
these errors. A third source is aliasing in the transform domain, which is potentially associated
with any discrete Fourier transform. The level of aliasing is determined by the spacing of the
discrete samples in the space domain. Thus, increasing the density of the samples in the space
domain simultaneously decreases two types of error: the error representing the discrete repre-
sentation of the circular function and the aliasing error.

In what follows, it is convenient to assess errors associated with the absolute value of the
transform, since the absolute values are independent of exactly where in the array of samples the
circular function is placed. The choice of a uniform circle as the space-domain function is con-
venient because the exact transform is analytically known:

EQ-TARGET;temp:intralink-;e010;116;417GðρÞ ¼ bJ1ð2πbρÞ∕ρ; (10)

where b is the radius of the circular space-domain function.

4.1 2-D Fourier Transform Method

Simulations have shown that the errors associated with the 2-D Fourier transform method and the
projection-transform method are identical. This is perhaps not surprising in view of the projec-
tion-slice theorem. Selection of a radial profile from the 2-D transform is in effect selecting half
of a slice through that transform. Nonetheless, there is at least one topic worth discussing sep-
arately, which we defer to the projection-slice error section.

The number of samples of the circle in a diameter along either the x or the y axes is again
represented by M and the total padded square array of samples is size N on a side. Consider
Fig. 3 in which are shown (a) absolute value of samples of the transform, as calculated by either
the 2-D Fourier method or the projection-transform method (the results are the same), (b) the
corresponding transform obtained from the exact analytical solution, and (c) a superposition of
interpolated samples of the exact analytical solution and the errors represented by the absolute
differences between the calculated and exact solutions. Linear interpolation has been used
between sample points in the first two cases. The vertical axes have logarithmic scales, and the
transforms have been normalized to unity at the origin. Because of this normalization, the errors
shown can be viewed as fractional errors with respect to the maximum value of the transforms,
which occur at the origins. As indicated in the caption, these results are for the specific choices of
M ¼ 128 and N ¼ 512 and are presented as an example of the relevant results, from which
maximum errors are determined.

Figure 4 shows a plot of the maximum value of the errors as defined above, for different
values of M and N. In all cases, N ¼ 4M; that is, the M ×M samples of the circle are padded
by 3M∕2 zeros in each direction.

What conclusions can we draw from these results? The primary conclusion is that as M is
increased while holding N as a constant multiplier of M, the density in the sampling of the
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Fig. 4 Error maximum absolute values calculated by taking the maximum of the absolute values of
the differences between the absolute values of the 2-D FFT result and the absolute value of the
sampled exact analytical result, both for N∕2 points in the two spectra. M takes the values 32, 64,
128, 256, 1024, and 2048, and in all cases N ¼ 4M .

(a)

(b)

(c)

Fig. 3 Results obtained with the 2-D Fourier transform method and the projection-transform
method. (a) Radial profile obtained by discrete calculation; (b) radial profile obtained from samples
of the exact analytical solution; and (c) errors in the absolute value of the transform at each sample
location overlaid with the same curve as (b). For these results,M ¼ 128 and N ¼ 512. Results are
only shown for the first N∕2 samples, which represent the radial profile. Linear interpolation has
been used for the continuous curves.
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space-domain function increases, thus increasing the accuracy of the digitized circular function.
(See Ref. 8 for an improved representation of a discrete circle.) At the same time, the density of
samples within the transform remains constant, a consequence of keeping N as a constant multi-
plier ofM. The reduction of errors asM is increased is primarily due to the reduction in errors in
representing the uniform circular function by a discrete array with a finite number of samples.
Figure 3 does show some increase in the level of errors when the transform coefficient index goes
beyond about N∕4, which may be a consequence of some aliasing, but the effect on sample
values with index smaller than N∕4 appears to be negligible.

4.2 Projection-Transform Method

As has been said, the projection-transform method yields exactly the same results as the 2-D
Fourier transform method, as far as the radial profile of the spectrum and the errors are
concerned.

There is one result concerning the projection operation that is interesting and will be pre-
sented here, because it sheds some light on the errors associated with a discrete approximation to
a circular function. It is easy to calculate an analytical expression for the projection of a uniform
circle with value unity and radius b onto any central axis. The result is

EQ-TARGET;temp:intralink-;e011;116;519pðxÞ ¼
Z

b

−b
gðx; yÞdy ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − x2

p
; (11)

where b is again the radius of the circle represented by gðx; yÞ. This exact expression for the
projection can be compared with the discrete projection obtained by integrating down each col-
umn (or across each row) of the rectangular array representing the digitized circle. By gradually
increasingM, the transition between a bad representation of the circle and a good representation
of the circle will be seen.

Figure 5 shows plots of the projection of a uniform discrete circle for various numbers of
M ×M samples in the representation of the circle. The differences between the exact analytic
projection of the circle and a discrete projection through a digitized circle are the main source of
errors for the projection-transform method. But the errors associated with the projections arise
from the digitized circle itself, just as they do for the 2-D FFT method, and ultimately they are the
same for these two methods.

Fig. 5 Projections through an M ×M digitized circle for various numbers of samples.
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4.3 Quasifast Hankel Transform Method

Evaluating the errors in the quasifast Hankel transform method is a bit more difficult than for the
other methods. The reason is that there are a number of different parameters to choose, and
different choices yield different advantages. Note that Eqs. (7) and (9) only specify the products
βb and r0ρ0, but not the values of the individual variables in these products. As a consequence,
experimentation is required to find the best assignments for these variables. In all cases, the
space-domain function chosen is a uniform circle of value 1 and radius b, since the analytic
solution for the transform is known.

With respect to the product βb, it has already been mentioned that the donut hole has been
found to be present but minimized when we choose b ¼ 1 and choose β as the total product βb.
With respect to the product r0ρ0, we adopt Siegman’s choice of r0 ¼

ffiffiffi
α

p
∕2 and ρ0 ¼

ffiffiffi
α

p
∕2

which yields well-shaped sidelobes.
Figure 6 shows a plot of the absolute value of the analytic solution for the main lobe and

several sidelobes when M ¼ 512 samples are taken inside the exact analytical solution. The
samples are not equidistant, due to the nonlinear stretching of the ρ axis characteristic of the
quasifast Hankel transform method. Shown on the same plot as discrete points are the error levels
at the sampling points, where the error is between the samples of the transform computed by the
quasifast Hankel transform and the exact values taken from the analytical solution. Note that the
maximum errors occur where the slope of the transform is highest.

Finally, in Fig. 7 is shown the maximum error as a function of the numberM of samples in the
radius of the circle on a loglog plot. All the error values for the quasifast Hankel transform are
larger than the corresponding error values for the same values of M with the 2-D Fourier trans-
form or the projection-transform approaches. This is true even though the errors associated with

the donut hole have not been included. Padding the two sequences f̂ and ĵ with additional zeros
has not been found to improve the maximum errors appreciably. The estimates of error have been
made with certain choices of the parameters relevant for the quasifast Hankel transform. Our
choice of parameters followed Siegman’s choices. It is always possible that there are other
choices among the myriad of possibilities that might yield lower errors than reported here, but
we have been unable to find them.

4.4 Numerical Integration of the Hankel Transform Equation

Since the exact analytic solution of the zero-order Hankel transform of a uniform radial profile of
a circle is known, it is a simple matter to find the absolute errors between the exact result and the
result of numerical integration of the Hankel transform equation. The method used for numerical
integration in the Gauss–Kronrod method, which is the default methodMathematica chooses for
this problem. Calculations for various values of M show that these absolute errors are at

Fig. 6 Calculated absolute spectrum (normalized) and error values for the quasifast Hankel trans-
form of a uniform circle. The solid curve represents the result of the calculation, with linear inter-
polation between sample points. The red dots represent errors at the sample points. Both the solid
curve and the error values are normalized by the value the transform would have at the origin. The
donut hole has been preserved in the solution, but no errors have been represented in that region.
The number of samples in the diameter of the circle isM ¼ 512. Parameter values α ¼ 0.0161231,
r 0 ¼ ρ0 ¼ ffiffiffi

α
p

∕2, b ¼ 1, and β ¼ 15.5057 have been used.
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maximum a few times 10−15. These errors are at least 10 orders of magnitude smaller than the
best of those found for the various other numerical methods examined here. As a consequence, it
is reasonable to consider both analytic solutions and numerical-integration solutions as the
“exact” solutions with which other solutions are compared.

5 Comparison of Shape Errors Due to Inadequate Spectral Sampling
Density

Errors that occur at the sampling points are one form of error. However, there is another form that
also requires attention, namely, errors in form or shape of the spectrum due to inadequate spectral
sampling density. It is possible that errors at the sampling points are acceptably low, but that
nonetheless the continuous shape of the spectrum displayed is distorted. This type of error is
most important for spectra with a great deal of detailed structure, such as the spectrum of a
uniform circle, but is much less noticeable in less complicated spectra, such as the spectrum
of a truncated Gaussian function. The appearance of the displayed spectrum is also often de-
pendent of the type of interpolation used by the plotting program. This type of error is more
difficult to quantify; in many respects, the acceptability of such errors depends on the observer’s
criterion for the required accuracy of the shape of the spectrum. This section addresses such
errors.

5.1 2-D FFT and Projection-Transform Methods

Since these two methods produce exactly the same calculated transform and exactly the same
errors at the sampling points, they can be discussed together. Referring the reader to Fig. 3, the
displayed transforms by both methods will be identical. Zeros are not represented well in the
calculated transform, due to the fact that the sampling points only occasionally fall close to a
zero. However, a more serious problem is observed when the spectrum of Fig. 3(a) is displayed
in an expanded view. Figure 8 shows the details of a low-frequency part of the spectrum in such a
view. Part (a) of this figure is a plot calculated from a very densely sampled continuous analytic
solution for the spectrum. Part (b) shows the interpolated discretely calculated spectrum dis-
played by the plotting program with linear interpolation between samples. Part (c) shows the
same set of sample points this time interpolated with second-order interpolation. Part (d) shows
the spectrum when the plotting program uses third-order spline interpolation. The distortions in
(b) and (c) are clear. The spline fit is not perfect, but it is much closer to the analytic solution in
terms of the shape of the sidelobes. Part (e) shows the magnitude of the spectrum, with error
values, when the padding of the aperture is increased to yield N ¼ 1024 while M remains 128.
Linear interpolation has been used in part (e). The maximum error has not changed appreciably

Fig. 7 Maximum absolute errors for values ofM equal to 32, 64, 128, 256, 512, and 1024 using the
quasifast Hankel transform method. The Fourier transforms all would have value unity at the origin
if it were not for the donut hole, so the maximum errors can be regarded as fractional values of the
value the transform would have at the origin. We have neglected any errors caused by the donut
hole. For this curve, we have adopted Siegman’s choice of r 0 ¼ ffiffiffi

α
p

∕2 and ρ0 ¼ ffiffiffi
α

p
∕2. In addition,

b ¼ 1 and β ¼ βb.
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between case (b) and case (e), in spite of the more dense sampling of the spectrum, suggesting
that the most important source of the errors is the discretization of the circle, rather than aliasing.

5.2 Quasifast Hankel Transform Method

Consider Fig. 6 which shows a plot of the spectrum magnitude obtained by this method when the
number of spectral samples is M ¼ 512 and linear interpolation is used. The parameters are as
specified in Fig. 6. The red dots represent errors at the sample points normalized by the value the
spectrum would have at zero frequency. While the errors at the sample points are relatively high,
the shapes of the main lobe and the sidelines are good, especially at the low frequencies where
the sampling is most dense. Unfortunately, a donut hole exists and the extent of the spectrum
calculated by this method is small compared with other techniques. These latter drawbacks are
not shared by the other methods.

6 Examples of the Computation Times for the Four Methods

To provide a specific example, simulations have been run for four methods using an 8-core iMac
Pro (2017) running macOS Catalina version 10.15.2 and using Mathematica, version 12. In all
cases but one, the total number of samples in the diameter of the circular function wasM ¼ 256,
and the total number of samples after padding was N ¼ 1024. In the case of the quasifast Hankel
transform, two results are presented, one for M ¼ 256 and one for M ¼ 1024, the latter being
included so that it is possible to compare the result with those that used padding to increase the
number of samples in the spectrum to N ¼ 1024. For the quasifast Hankel transform technique,
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Fig. 8 Interpolated low-frequency portions of spectra. (a) Analytic solution, (b) sampled calculated
spectrum with linear interpolation, (c) sampled calculated spectrum with quadratic interpolation,
(d) sampled calculated spectrum with third-order spline interpolation. In parts (b)–(d),M ¼ 128 and
N ¼ 512. In part (e), the padding has been increased so that the total number of samples is 1024
while M remains 128, and linear interpolation is used.
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the time to create the arrays f̂ and ĵ in the x domain from the r domain, the time to perform the
three 1-D Fourier transforms, and the time to change the results from the y correlation variable to
the ρ frequency variable were included. The times to solve the nonlinear equations to determine
the values of the parameters are not included, and in no case was plotting time for the result
included. In the case of the projection-transform method, the time to compute the full sequence
of projection samples and the time to apply a 1-D FFT to the padded projection sequence were
included. Simulations of each method were run 10 times, and the average times and standard
deviations were calculated. The time required for a numerical integration of the Hankel trans-
form is also included. Table 2 contains the results.

7 Concluding Remarks

This paper has examined four different methods (including numerical integration) for computing
the radial profile of the Fourier transform of a circular symmetric function. The projection-
transform method is fastest in speed and has accuracy that is second only to numerical integra-
tion. For problems involving Fourier transforms of circularly symmetric functions of any kind,
this method is the fastest.

The quasifast Hankel transform is faster than the full 2-D FFT method, but it does not achieve
errors comparable with the 2-D FFT or with the projection-transform methods. Note that the
times to perform the coordinate transformations have been included in the results of Table 2.
This technique has the further disadvantage that there exists a donut hole in the results, which in
general is not acceptable, except perhaps in the case of transforms that are zero at the origin. The
only real advantage of this method is that it can be used for higher-order Hankel transforms than
are needed here, but it should not be the method of choice for circularly symmetric functions.

Extracting a radial profile from a 2-D Fourier transform is third in speed, and numerical
integration is the slowest but most accurate method.
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