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Abstract. Trace chemical detection and classification in stand-off reflection-based spectro-
scopic data is challenging due to the variability of measured data and the lack of physics-based
models that can accurately predict spectra. Most available models assume that the chemical takes
the form of spherical particles or uniform thin films. A more realistic chemical presentation that
could be encountered is that of a nonuniform chemical film that is deposited after evaporation of
the solvent that contained the chemical. We present an improved signature model for this type of
solid film. The proposed model, called sparse transfer matrix, includes a log-normal distribution
of film thicknesses and is found to reduce the root mean square error between simulated and
measured data by about 25% when compared with either the particle or uniform thin film
models. When applied to measured data, the sparse transfer matrix model provides a 10% to
28% increase in classification accuracy over traditional models. © The Authors. Published by
SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this
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1 Introduction

Detection of trace amounts of chemicals on surfaces is a desirable capability for a wide range of
applications such as forensics, defense, border protection and monitoring, and other applications
throughout the law enforcement and intelligence communities.! Chemicals of interest for these
applications include explosives, chemical warfare agents, narcotics, etc. Midinfrared (MIR)
spectroscopy is intrinsically capable of detecting such chemicals with both high sensitivity and
high specificity.” Active spectroscopy is arguably the only technique capable of achieving high-
sensitivity standoff detection of trace chemicals on surfaces while achieving high areal coverage
rates.* A notional example of an active MIR hyperspectral imaging (HSI) system is shown in
Fig. 1. The system operates by measuring the spectral reflectance of the target surface in the MIR
portion of the optical spectrum. The illumination source is typically a quantum cascade laser
(QCL).>>% The measured signature is compared to a spectral library of reference signatures.
Because of the wide range of relevant applications for this type of technology, the spectral library
often includes hundreds to thousands of reference chemicals, making the association of mea-
sured data with the reference data very challenging.

The detection and classification performance of such a system is limited by the availability of
relevant datasets for properly training the detection algorithms. Because it is often not possible to
measure all combinations of chemicals, chemical presentations (i.e., deposition method), and
substrates, it is important to be able to generate spectral libraries from physics-based signature
models.” However, developing a signature model for trace chemical detection applications is
challenging due to the phenomenological complexities. Representative models must account
for multiple types of scattering with dependencies on the chemical, surface, and geometric
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Fig. 1 Notional depiction of stand-off trace chemical detection via an active spectroscopic instru-
ment. The reference signature library is pertinent to the system’s ability to detect chemicals of
interest.

properties, including particle size and distribution, surface roughness and dielectric properties,
illumination angle, etc.®® Furthermore, due to the high variability of chemical and surface prop-
erties in real-world data, the signature model parameters must be carefully selected.'”

Of particular interest to the research presented in this paper is the development and testing of
a signature model designed specifically for modeling a trace chemical residue. Here, trace chemi-
cal residue is defined as the film-like residue that remains on a surface after the evaporation of
a solvent that contained the chemical. Previous models that have been developed for trace
chemical particles (e.g. Mie scattering)''™'* and uniform thin liquid films (e.g. the transfer
matrix — TM — model),'""'® do not sufficiently capture the case of the film-like residue.
Specifically, we have found that chemical residues do not present themselves as uniform films,
as shown in the photomicrographs of two chemical residue samples on glass in Fig. 2. This paper
proposes a modification to the well-known TM model to specifically handle the physics of trace
chemical residue. We call this modified model sparse transfer matrix (STM). STM assumes
a nonuniform film with thickness sampled from a log-normal distribution, as opposed to the
standard TM model, which assumes uniform film thickness. Note that STM includes a uniform
thin film as a special case.

This paper is structured as follows. Section 2 gives a brief overview of previous research
in the area of active spectroscopic phenomenology of chemicals. Specifically, we cover the

Warfarin on glass Naproxen sodium.on glass
260 pg/cm? 171 uglcm?

(a) (b)

Fig. 2 Photomicrographs of chemical residues on glass: (a) warfarin and (b) naproxen sodium.
Both samples show nonuniform distributions of film thickness across the contamination area.
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state-of-the-art in extracting optical constants that are required inputs to any chemical signature
model followed by a summary of physical, chemical, surface, and geometric properties that have
been found to cause spectral signature variability. We finish this section by defining two related
physics-based models for the application at hand. The proposed model for this research is
described in Sec. 3. The descriptions of real and synthetic data used in this research can be
found in Sec. 4.1. Section 4.2 compares the overall fit of the various signature models with
measured data. The results on the classification performance improvement on real data are
presented in Sec. 4.3.

2 Background

The derivation of physics-based signature models used for active spectroscopy requires not only
an understanding of the underlying physics, but also information on the various physical proper-
ties. We define the models presented in this paper as being “physics-based” to make the
distinction between physical models and machine/deep learning models, which have also been
applied to chemical reflectance modeling.” The physical models that are typically used in stand-
off active spectroscopy applications combine theoretical physics with empirical measurements
or assumptions as some if not many of the physical properties are not known for a given
measurement.'® In the next few subsections, we discuss some of the physical properties and
empirical data that we use to estimate and predict chemical reflectance. One of the most crucial
inputs to a physics-based model is the wavenumber-dependent complex optical constants that are
unique to each chemical.?’ There exists much research in the literature on extracting chemical
optical constants of chemicals, in either liquid or solid phase, as well as signature models for
calculating the reflection spectrum from contaminated surfaces. Although this area of developing
active spectroscopic signature models has been explored for quite some time, we consider two of
the most widely-accepted models in this paper: one for solid particles on a surface and one for
uniform thin liquid films on a surface.'

2.1 Estimating Optical Constants

It is well known that the underlying spectral features (absorption peaks in active spectroscopy) of
both the chemical and surface derive from their complex optical constants.”” While the deter-
mination of optical constants for liquids is relatively straightforward, their determination for
solids is much more complicated. One of the more widely accepted approaches is to use sin-
gle-angle reflectance spectroscopy followed by Kramers-Kronig transformation for estimating
optical constants (jz) for crystalline solids.*'* For solid minerals, DeVetter et al. have shown
that using carefully designed mask apertures with low reflectance is more optimal for solid
minerals.”> The optical constants used in this research were measured and provided by
Pacific Northwest National Laboratory (PNNL) through TARPA’s (Intelligence Advanced
Research Projects Activity) SILMARILS (Standoff ILluminator for Measuring Absorbance and
Reflectance Infrared Light Signatures) program.

2.2 Trace Chemical Phenomenology

In measured data, estimating trace chemical reflectance is not as simple as calculating the reflec-
tance of a solid chemical at the chemical/air boundary.’® Instead, it varies greatly with a number
of factors. Some of the more significant parameters are particle size?” and shape for solids®® or
film thickness in the case of liquids,”>° sample morphology,’' surface roughness,*> and sam-
pling angle (i.e. bidirectional reflectance function — BRDF).”** In addition to these factors,
reflectance spectra may also vary with chemical thermodynamic state,** molecular interactions,
and humidity.***” Figure 3 demonstrates the expected variability of normalized reflectance for
trace chemical films on surfaces. The curves show measurements for six identical samples
(saccharin films on glass) collected by the same sensor at two slightly different measurement
angles. There is high variability in the overall spectral shape and the depth of spectral features
due to the differences in measurement geometry.
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Fig. 3 Normalized reflectance measurements of six identical samples (saccharin film on glass at
a concentration of 100 ug/cm?) collected with the same sensor at two measurement angles,
demonstrating the high variability of trace chemicals. Note the variability in not only overall spectral
shape, but also the depth of the distinct spectral features.

2.3 Existing Signature Models

The implementations of the Mie scattering particle model and TM uniform thin film model
considered in this paper are defined by Myers et al.'” For the reader’s convenience, these models
are summarized in the next two sections.

2.3.1 Mie scattering models for particles

Mie scattering describes light scattering from an isolated spherical particle of known complex
optical constant and diameter. In addition, it is often used to approximately describe the scatter-
ing of light from particles on a surface, which is schematically depicted in Fig. 4(a). For the case
of particles on a surface, the effect of the substrate has a significant impact on the reflectance
spectrum. The Mie scattering-based model accounts for multiple types of scattering — backscat-
tering from the particle back to the sensor at varying angles depending on the particle shape and
sensing geometry (e.g., angle) and forward scattering from the particle to the substrate (i.e.,
surface) first and back toward the sensor second [see Fig. 4(a)]. Finally, there is reflectance
of the bare substrate itself in regions that are not covered in particles. The fraction of a pixel
covered by particles is known as the fill factor. The fill factor (FF) depends on the chemical mass
loading (i.e., concentration), m (ug/cm?), chemical density, p (ug/cm?), particle diameter mean,
u (cm), and standard deviation, ¢ (cm), as

(a) Particle on surface (b) Film on surface (C) Sparse film on surface
(Mie scattering) (transfer matrix) (sparse transfer matrix)

Back  Forward Substrate
scatter  scatter  scatter

\

Ox

l Substrate I :

Fig. 4 (a) A diagram of the types of scattering captured by the Mie scattering particle model.
Backscatter interacts with the particle and reflects back toward the sensor while forward scatter
reflects off the particle, onto the substrate, and back toward the sensor. Areas without particles will
only show substrate reflectance. (b) The TM method models the light refraction as it travels
through and back out of the liquid film on the substrate, as well as scattering within the film
as the light interacts with the substrate itself. (c) The STM model includes films of nonuniform
thickness sparsely covering the pixels. The film contributions are calculated using the TM method.
The reflectance is a linear combination of film and substrate reflectance.
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Fig. 5 The Mie scattering model (blue curve) provides strong fits to measurements (black curve)
of (a) RDX and (b) PETN particles on glass.
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where Dpyrice,; 18 @ particle diameter with units (cm) sampled from a particle size distribution.
We use a log-normal distribution, shown to be effective for modeling particle sizes***" with
mean ¢ and standard deviation 6. Let Ry, be the particle reflectance based on Mie scattering

Rpanicle(j') = SBQB(’I) + SLTQS(A')Rsub(ﬂ) + SQTQS()“)ZRsub()“)’ (2)

where 2 is the wavenumber (cm™!) and Ry, is the substrate reflectance. S, S; 7, and S or are the
backscattering, linear transflection, and quadratic transflection strength parameters, respectively.
Qp and Qy are the backward and forward scattering reflectance contributions calculated using
the complex optical constants for the specific chemical. Then, the full model for a particle on
a surface is defined as

RP(’D - Rparticle (/I)FF + SFsub(1 - FF)Rsub(/l)’ 3)

where SF,, is the substrate scale factor, which may be used as a proxy for BRDF information.
The user must define the particle diameter mean, u, standard deviation, o, and substrate scale
factor SF,.

Figure 5 shows comparisons of the Mie scattering model predictions to actual measurements
of cyclotrimethylenetrinitramine (RDX) and pentaerythritol tetranitrate (PETN) particles on
glass (samples prepared by the Naval Research Laboratory). These results were generated using
u =12 ym, 6 = 10 ym, and SF_,, = 1.0.

2.3.2 Transfer matrix model for liquids

The TM method is a standard approach for calculating the reflection and transmission properties
through a stack of uniform thin films with each layer having a known complex refractive index
thickness [see Fig. 4(b)]. Recall the complex optical constant is denoted by n. We define the
optical constants at each uniform thin film layer interface as: i, for air, i, for the chemical,
and 7y, for the substrate. The complex reflection coefficients at each layer interface are defined

by r, and r, (for the single chemical case)'¢!82¢
ar —nk
1) = air chem , 4
rl( ) ﬁ;ir + ﬁ:hem ( )
and
ﬁ* —_ ﬁ*
7‘2(/1) _ _“chem sub (5)

po —x
M chem + b

Optical Engineering 092012-5 September 2020 « Vol. 59(9)



Murphy et al.: Practical model for improved classification of trace chemical residues. ..

(a) Scene

Scene parameters:

Focal length: 20 cm
F-number: 1.4

Aperture diameter: 14 cm
Pixel width: 40 microns
Distance to camera: 5 m
Camera pixels: 64 x 64
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Fig. 6 The TM model accurately captures the spectral shape and features of thin films of silicone
oil and TEP on HDPE. (a) A cartoon representation of the sample, (b) the measured spectra, and
(c) the simulated representation.

where * indicates the complex conjugate. Let r; be defined as

() = ri(4) + ry(A) exp(=2i6)

1+ r () (2) exp(=2i8)° ©)

where & is the optical depth through the chemical film.!”!®2® Finally, the reflectance from
a uniform thin film is given as'*!?

Rp(4) = r3(A)r3(2)*. @)

Note that r; and r, are calculated at normal incidence. This is an approximation, as knowledge of
the incidence angle is not guaranteed in standoff active spectroscopy applications.

We previously used this model as part of a hyperspectral imaging simulator. As shown in
Fig. 6, the simulator was able to duplicate the main characteristics of the hyperspectral image of
a sample that depicted the logo of TARPA using two different chemicals.'” In particular,
the TM model effectively predicted the spectra of two chemicals, silicone oil and triethyl
phosphate (TEP), on a plastic surface is shown in Fig. 6.
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3 Sparse Transfer Matrix Model for Solid Film Residue

For most samples, however, we have found that neither the Mie scattering nor the TM method is
sufficient to model film-like residues. Instead, we developed a model called STM to account for
this case. STM assumes that only a portion of the surface is covered by the chemical, the fraction
called the fill factor. The remainder is bare substrate. This is shown in Fig. 4(c). Furthermore, the
film in the contaminated regions is assumed to have a nonuniform thickness. As with the Mie
scattering model for particles, we assume the film thickness follows a log-normal distribution.
The STM model is defined as

RSF (/1) = RF (A)FF + (1 - FF)SFSubRsub (’1) (8)

Before using the STM model for detection and classification of chemical residue samples, we
must set some application-dependent parameters: the particle diameter mean and standard
deviation, u and o, respectively, and the substrate scale factor, SF,.

4 Experiments and Results

The analysis for this effort focuses on demonstrating the utility of the STM model. First, we
quantitatively compare the synthetic spectra generated by each model to measured data. We
include qualitative comparisons between the measured data and simulated data to demonstrate
the phenomenology captured by each of the models. Finally, we observe the improvement in
classification performance on measured data when using the proposed STM model over the more
well-known models. The measurements used for this analysis were acquired by Kelley et al.,>®
and the full simulation tool used to produce synthetic spectra with the STM model was devel-
oped by Myers et al."” as part of the IARPA SILMARILS program.

4.1 Description of the Measured Data

Various substrate samples with chemical contaminations at a range of concentrations were pre-
pared and provided by Johns Hopkins University Applied Physical Laboratory (JHU/APL). The
solid chemicals were first dissolved in a solvent and then evenly airbrushed over the substrates
using a mechanical arm. The active MIR hyperspectral reflectance measurements were collected
by the system developed by Block MEMS for the IARPA SILMARILS program.>®*' In total,
JHU/APL prepared six different chemicals on eight different substrates, though not all of the
chemicals were used on all of the substrates. To avoid biasing the classification results for a
particular chemical—substrate combination, we limit the data used for these experiments to those
chemicals and substrates for which we have at least one measurement for each unique pair (three
chemicals and four substrates in this case). The breakdown of measured samples per chemical,
substrate, and concentration are shown in Table 1.

As shown in Table 1, there are an unequal number of measurements for each chemical—
substrate class. This can lead to biased parameter tuning and results if not addressed properly.
For this research, we focus on overall performance metrics. That is, fit and classification per-
formance results are averaged within each class prior to averaging performance results across
the different classes in Table 1.

Recall from Secs. 2.3.1 and 3 that the user must define several parameters before applying the
Mie scattering or STM models: the particle diameter mean and standard deviation, 4 and o,
respectively, and the substrate scale factor, SF,,. The selected parameters should be relevant
and physically realistic for the trace chemical detection application. Ideally, a range of values
for each parameter should be used such that the simulations capture the full variability. Solid
particles with a mean diameter of 10 um were dissolved to produce the samples discussed.
Though dissolved particles may be <0.1 ym in diameter, the scattering from such particles
is negligible in the MIR where the illumination waves are on the order of 1 ym. Similarly,
we only consider particle diameter standard deviations of 0.1 to 1.25 ym. The substrate scale
factor in the Mie scattering and STM models provides a proxy for the substrate BRDF as
this information is not necessarily readily available. We consider a scale factor ranging from
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Table1 The number of measured samples and their concentrations for each
unique chemical/substrate combination under consideration in this study.

Substrate/chemical

Aspirin

Pentaerythritol

Saccharin

Cardboard

Glass

HDPE

Rough aluminum

14 at 50 ug/cm?

1 at 100 pg/cm?

2 at 10 ug/cm?
2 at 100 ug/cm?
4 at 10 ug/cm?

7 at 100 ug/cm?

15 at 50 pg/cm?

1 at 100 pg/cm?
1 at 150 pg/cm?
2 at 10 ug/cm?
5 at 100 ug/cm?
1 at 10 ug/cm?
5 at 100 ug/cm?

1 at 150 pg/cm?

2 at 50 ug/cm?
3 at 100 ug/cm?
1 at 150 ug/cm?

6 at 100 ug/cm?

2 at 100 ug/cm?

3 at 10 ug/cm?
5 at 100 ug/cm?

1 at 150 pg/cm?

Table 2 Tunable model parameters and their range of values used for our

experiments.

Parameter Definition Experiment values
u Mean particle diameter 0.1 to 10.0 um
c Particle diameter standard deviation 0.10 to 1.26 um
SFqp Substrate scale factor 0.1 to 10.0

0.1 to 10.0, which is the range of BRDF values measured from a clean sample of high-density
polyethylene (HDPE) (measurements provided by PNNL under the IARPA SILMARILS pro-
gram). These parameter ranges are summarized in Table 2. Both the simulated and real data
used for this analysis consist of 200 wavenumbers from 980 to 1290 cm~! with an approximate
1.56 cm™! spacing. Reflectance signatures are normalized to avoid any calibration inconsisten-
cies as well as to show the differences in the overall shape and location of spectral features,
which are the discriminating features in active spectroscopy detection and classification
applications.

4.2 Comparisons of Simulated and Measured Data

The plots in Fig. 7 provide qualitative comparisons of the synthetic spectra generated by the
STM simulation tool (gray curves) with their corresponding measurements (black curves).
The variability in the simulated spectra can be attributed to the wide range of parameter values
summarized in Table 2. Of perhaps more interest to this research is the quantitative comparison
of the abilities of the various signature models discussed to accurately model real measured
reflectance signatures. For this comparison, we calculate the overall root mean square error
(RMSE) of the outputs of the Mie scattering, TM, and STM models with their corresponding
measurements.

We calculate overall RMSE while varying each of the model parameters to capture the sen-
sitivity of the models considered. Using Eq. (1), we find that the fill factor is only <1 for mean
particle diameters >2 ym. Therefore, the substrate scale factor has no effect for small particle
sizes [see Egs. (3) and (8)]. We begin the sensitivity analysis by varying the mean particle
diameter, u, within the range in Table 2. The standard deviation, o, and substrate scale factor,
SF,ub, are set to 0.5 pym and 1.0, respectively. The average RMSE for each of the reflectance
092012-8

Optical Engineering September 2020 « Vol. 59(9)



Murphy et al.: Practical model for improved classification of trace chemical residues. ..

50.00 pig/cm? of aspirin on cardboard

510.00 yglcm2 of pentaerythritol on cardboard

0.8 1
| Simulated
8 |— Measured 3
5 0e 5
°© °©
2 2
5 0.4 H
-4 -4
0.2
o [
1000 1050 1100 1150 1200 1250 1000 1050 1100 1150 1200 1250
Wavenumber [cm"] Wavenumber [cm"]
100.00 yg/cm2 of aspirin on glass 150.00 l,lglc:m2 of pentaerythritol on glass
Simulated Simulated
—Measured —Measured
0.8
g 0.6 g
< I}
° °
2 2
% 0.4 H
-4 -4
0.2
. . 0 v . A oA
1000 1050 1100 1150 1200 1250 1000 1050 1100 1150 1200 1250
Wavenumber [cm"] Wavenumber [cm"]
100.00 yg/t:m2 of aspirin on HDPE 100.00 uglcm2 of pentaerythritol on HDPE
Simulated
— Measured
08f || 0.8
Simulated
3 —Measured 3
§ 06 | § 06
2 2
% 0.4 % 04
(- -4
0.2 0.2
1000 1050 1100 1150 1200 1250 1000 1050 1100 1150 1200 1250
Wavenumber [cm"] Wavenumber [cm"]
100.00 pglt:m2 of aspirin on rough aluminum 100.00 ugl(:m2 of pentaerythritol on rough aluminum
155 o - . - 1 —
A A
0.8 0.8
('é 0.6 § 0.6
] g
H H
% 04 % 04
-4 -4

[ Simulated

P7—Measured

1000 1050 1100 1150 1200 1250
Wavenumber [cm"]

o
)

Simulated ||
— Measu‘r’ed
1000 1050 1100 1150 1200 1250
Wavenumber [cm"]

100.00 pig/cm? of saccharin on cardboard
1

Simulated
——Measured

Reflectance
o [~ o
> o ©

o
[

oL AN 'R
1000 1050 1100 1150 1200 1250
Wavenumber [cm"]

100.00 l,lglcm2 of saccharin on glass
1r . A -

N I Simulated
| — Measured

Reflectance

== . \
1000 1050 1100 1150 1200 1250
Wavenumber [cm"]

100.00 ,.lg/l:m2 of saccharin on HDPE

Simulated
—Measured

Reflectance

0 . .
1000 1050 1100 1150 1200 1250
Wavenumber [cm"]

100.00 pg/l:m2 of saccharin onrough aluminum
1

Reflectance
o [~ 4
> o ©

o
»

Simulated
——Measured

1000 1050 1100 1150 1200 1250
Wavenumber [cm"]

Fig. 7 Comparisons of STM-simulated spectra (gray curves) with their corresponding measure-
ments (black curves). All data are shown in normalized reflectance units.

models is shown as a function of y in the left-hand plot in Fig. 8. Because the TM model only
varies with the input concentration, its RMSE does not vary with g. STM outperforms the other
two models in terms of overall RMSE. Both STM and Mie scattering demonstrate minimum
RMSE for mean particle diameters >2 um (i.e., fill factor <1) indicating that the uniform thin
film assumption of the TM model is less valid for residue samples.

RMSE with varying 1 RMSE with varying o RMSE with varying SF,.p
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Fig. 8 Overall RMSE as a function of each of the model parameters for each of the three signature
models considered. The STM model (red dotted curves) consistently outperforms the other
models in terms of overall fit to the measured data.
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Fig. 9 Comparisons of measured data (black solid curves) with example spectra generated by the
three signature models considered. The model parameters were selected to jointly minimize the
overall RMSE of all models. The STM model (red dotted curves) captures more of the features and
provides an overall better fit to the phenomenology of the measured data than the Mie scattering
(blue dashed curves) and TM (green dashed curves).

We continue the sensitivity analysis while allowing o to vary. For this result, x is set to
5.46 ym to jointly minimize the RMSE for both the Mie scattering and STM models.
Figure 8(b) shows that the particle size standard deviation has less effect on the RMSE than
the mean particle size. Finally, we set o to 1.14 um to minimize the RMSE of both Mie scattering
and STM and allow SF, to vary. The result is shown in Fig. 8(c). Overall, the STM model
achieves an average 25% reduction in overall RMSE.

The RMSE provides a measurement of the overall fit of the simulated data to the measured
data, but does not tell us how well the models capture the phenomenology of the samples.
Figure 9 compares example spectra simulated by each of the models with real measurements.
As with the previous results, we select model parameters that jointly minimized the RMSE
for both the Mie scattering and STM models for this result: 4 = 5.46 ym, ¢ = 1.14 ym, and
SF,, = 1.0. The examples include all three chemicals on three different substrates. The Mie
scattering and TM models capture some of the spectral features in each sample, but the STM
models provides an overall better match to the phenomenology. Some of the differences between
the STM and TM models in particular appear minor (e.g., the feature at 1025 cm™! in the penta-
erythritol plot). Recall that an active spectrometer has many applications, and the spectral library
often contains hundreds or more chemicals. Minor differences such as this are critical for accu-
rate classification when considering many chemicals that share the same or very similar features.

4.3 Classification Results on Real Data

Next, we test the ability of the reflectance models to improve classification results on real
measurements. For these results, we use RMSE as a classification metric. We compare each
measurement to the full spectral library generated by each model and select the chemical
that minimizes the RMSE. The model parameters are varied in the same way as in Sec. 4.2.
The overall classification accuracy as a function of each model parameter is shown for each
model in Fig. 10. Again, we see that the Mie scattering and STM models perform better for
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Fig. 10 Overall classification accuracy as a function of each of the model parameters for each
of the three signature models considered. The STM model (red dotted curves) consistently out-
performs the other models in terms of overall fit to the measured data. In particular, both the STM
and Mie scattering models achieve higher accuracy for larger particle diameters (fill factor <1),
indicating that the nonuniform film assumption is valid.
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larger particle sizes, suggesting that substrate effects must be considered for capturing the
phenomenology of residue samples. Again, performance is averaged over each class prior to
averaging across the different chemical-substrate classes. On average, STM achieves an overall
classification accuracy 12% to 15% greater than TM and Mie scattering, respectively. The peak
classification accuracy of the STM model is 74% as compared to the TM and Mie scattering
models at 46% and 64 %, respectively.

5 Summary

In this work, we present STM, an extension of the physics-based transfer matrix model. The
STM model better captures the phenomenology of chemical residues on surfaces by allowing
for a log-normal distribution of film thicknesses sparsely covering the surface. We compare the
STM model to the well-known Mie scattering and the standard transfer matrix models. First, we
quantify the overall fit of the simulated spectra to the measured data as a function of the model
parameters. Our STM model reduces the overall RMSE between simulated spectra and measured
spectra by about 25%. We also calculate the overall classification accuracy achieved when using
each of the three models to generate the reference signature library. When the model parameters
are optimized, STM outperforms the other two signature models by 10% to 28%.
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