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Abstract. We report our in-house R&D efforts of designing and developing key integrated
photonic devices and technologies for a chip-scale optical oscillator and/or clock. This would
provide precision sources to RF-photonic systems. It could also be the basic building block for
a photonic technology to provide positioning, navigation, and timing as well as 5G networks.
Recently, optical frequency comb (OFC)-based timing systems have been demonstrated for
ultra-precision time transfer. Our goal is to develop a semiconductor-based, integrated photonic
chip to reduce the size, weight, and power consumption, and cost of these systems. Our approach
is to use a self-referenced interferometric locking circuit to provide short-term stabilization to
a micro-resonator-based OFC. For long-term stabilization, we use an epsilon-near-zero (ENZ)
metamaterial to design an environment-insensitive cavity/resonator, thereby enabling a chip-
scale optical long-holdover clock. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.60.2.027107]
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1 Introduction

A wide range of scientific and commercial systems require time synchronization with increas-
ingly high precision and accuracy, including very long baseline interferometry (VLBI), particle
colliders, global navigation satellite systems, and 5G communications networks. Such time syn-
chronization is typically achieved through an external communication network, such as the inter-
net, dedicated satellite links, or free-space optical time transfer.1,2 Holdover clocks can reduce the
required update rate of time synchronization signals for such systems and also allow operation in
the event that these synchronization signals are temporarily unavailable, for example during
a network outage. Many of these same applications, such as VLBI at microwave frequencies,
would benefit from a frequency reference with not just long-term frequency stability, but also
with low phase noise—or equivalently short-term frequency stability.

Most holdover clocks are based on architectures for probing atomic transitions, which enable
good long-term frequency stability. However, the physics package containing the atoms to be
probed as well as environmental shielding contribute to an overall size and cost that limits the
systems’ size, weight, and power consumption, and cost (SWaP-C). The chip-scale atomic clock
(CSAC),3 which is commercially available from vendors such as Microchip and Teledyne, is a
state-of-the-art example of a miniaturized atomic clock, and indeed the size, and cost of a CSAC
is much lower than other atomic clocks. Nevertheless, the required vapor cells are not fully
integrated, adding to the size, and the environmental shielding adds cost.

Furthermore, the vast majority of holdover clocks operate at relatively low frequencies (e.g.,
less than 10 GHz). In this case, low-phase-noise operation can be achieved straightforwardly by
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the addition of a quartz oscillator in the loop. However, for holdover clocks that operate at
frequencies at or above 10 GHz, low-phase-noise operation is more challenging to achieve,
as low-phase-noise references at frequencies above 10 GHz are not widely available.

In this paper, we propose a chip-scale optical holdover clock (CSOC) that would use a
CMOS-compatible epsilon-near-zero (ENZ) optical resonator to provide a laser with enhanced
long-term frequency stability, an optical frequency comb (OFC) to divide the stabilized optical
frequency to a microwave, and a CMOS-compatible delay-line-based stabilization scheme to
reduce the phase noise of the generated microwave. The all-CMOS-compatible architecture
of the proposed clock may allow it to have SWaP-C that is even lower than that of a miniaturized
atomic clock, such as the CSAC. Such a reduction in SWaP-C would allow the CSOC to be used
in a wider array of circumstances. The remainder of the paper is structured as follows. In Sec. 2,
we discuss the overall architecture of the proposed CSOC and the design philosophy. In Sec. 3,
we discuss our experimental progress toward achieving a short-path-delay-line-based self-
stabilization system that would allow the proposed clock to generate a microwave signal with
low phase noise. The architecture was designed such that it could also be realized on a photonic
integrated chip (PIC) in a CMOS-compatible process. In Sec. 4, we discuss our experimental
progress toward achieving the environmentally insensitive ENZ resonator that will grant the
CSOC its long-term frequency stability. This includes developing wavelength thick ENZ
indium-tin-oxide (ITO) metamaterial and fabrication of air-core in ENZ ITO resonator devices.

2 Design Concept for CSOC

The principal objective of our design effort is to develop an optical holdover clock that generates
a microwave signal with good frequency stability and low phase noise while minimizing its
SWaP-C. The current state-of-the-art optical clock consists of three major components:4–8

(1) an ultra-low-expansion (ULE) cavity stabilized laser that generates an optical frequency with
ultra-narrow linewidth (low phase noise), (2) an atomic reference that disciplines the ULE-cav-
ity-stabilized laser in order to provide it with long-term frequency stability while preserving its
low phase noise, and (3) an octave-spanning OFC that coherently divides the low-phase-noise
and long-term-stable optical frequency down to a microwave frequency. Our approach to achieve
a CSOC is to develop an on-chip replacements for each of these three laboratory components
while maintaining the same purpose for each of these components. The goal is to eliminate
the high SWaP-C ULE locked laser and the atomic reference. With our new innovative design
concept, our proposed CSOC is made by a micro-resonator-based OFC that is simultaneously
stabilized with an on-chip delay-line interferometer and an environmentally insensitive ENZ
resonator.

2.1 Concept of Micro-Resonator OFC for Frequency Division

An immediate choice for achieving a reduction in size is to replace the traditional mode-locked-
laser-based OFC with a micro-resonator-based OFC.9–13 Indeed, other groups are developing
octave-spanning micro-resonator-based OFCs14,15 including as part of at least one effort to
develop an entire on-chip optical atomic clock.14 Hence, in the remainder of this paper, we will
not focus on the development of the micro-resonator-based OFC.

2.2 Concept for Achieving Short-Term Stability

The ULE cavities that provide optical clocks with exceedingly low phase noise are typically 10 s
of cms long16 and typically require high-SWaP-C external housing to provide environmental
isolation. Here, we propose to replace the ULE-cavity-stabilized laser with a photonic-integrated
short-path delay-line interferometer that stabilizes the OFC without the need for an intermediate
laser.17–19 Although optical-fiber-based delay-line interferometers are a well-established tool
to stabilize single-frequency lasers,17 they are not commonly used on PICs. By bringing
this technique to the PIC platform, we face a major challenge to overcome the waveguide
propagation loss, which is orders of magnitude higher than the propagation loss of optical fiber.
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Buried waveguides on the common 220-nm silicon-on-insulator platform typically achieve
propagation losses of approximately 2 dB/cm at wavelengths near 1550 nm.20 By moving to
more complicated waveguide geometries, silicon waveguides have been reported with losses
below 3 dB/m.21–23 Additionally, some approaches toward ultra-low-loss Si3N4 waveguides have
been reported demonstrating less than 1 dB/m loss.24,25 Nevertheless, regardless of the technol-
ogy, the propagation loss of an integrated photonic delay line is significantly higher than the
∼0.17 dB∕km propagation loss of commercial optical fiber.

Our expectation of increased propagation loss of the integrated photonic delay line had a sig-
nificant impact on the design of our interferometer. First, we limited the interferometer delay to less
than 10 m, which significantly decreased the sensitivity of the interferometer. Second, even with a
relatively short delay, we expect a high power imbalance between the delayed and non-delayed
components of the light at the output of the interferometer, which may result in an increased con-
tribution from laser relative intensity noise. Consequently, our development strategy was to first
construct a fiber-optic prototype to demonstrate that a short-path interferometer has sufficient sen-
sitivity to enable the generation of a low-phase-noise microwave. Future work will extend this
prototype to an integrated photonic chip that stabilizes a micro-resonator-based OFC. Toward that
end, we also designed and fabricated an integrated-photonic tunable coupler in order to mitigate
the expected power imbalance. The results of these experiments are presented in Sec. 3.

2.3 Concept of Environment-Insensitive Device for Long-Term Stability

Any oscillator is susceptible to long-term frequency drift. One of the most pervasive sources of
this drift arises from the oscillator’s sensitivity to environmental fluctuations, including acoustic,
vibrational, and temperature perturbations. The atomic reference in the laboratory-scale clock
serves to mitigate this drift, because the atomic transition is relatively insensitive to the envi-
ronment. Cold atoms are a particularly high-performing reference since they are extremely well
isolated from the environment. Nevertheless, atomic sources inherently increase the SWaP‑C of
a clock.

Rather than pursuing an on-chip atomic reference, we propose an approach to obtain long-
term frequency stability. We are developing an environmentally insensitive hollow-core micro-
resonator that is clad with an ENZ metamaterial.26 Although we do not expect the frequency
accuracy or frequency stability at very long timescales (e.g., >103 s) of the ENZ reference to be
competitive with cold atom references, we expect its frequency stability to compete with minia-
turized atomic clocks such as the CSAC. Moreover, when we consider the possibility to incor-
porate the fabrication of the ENZ resonator into a CMOS process, we expect that the overall
SWaP-C will be greatly reduced, resulting in a cheap, compact, and easily manufacturable
frequency reference.

Our concept is to use the ENZ metamaterial as waveguide cladding to form an air or vacuum
core resonator.26 Figure 1 shows a schematic illustration of the air-ring, ENZ-metamaterial-
cladding resonator device. The idea is to make an intrinsic environment-insensitive cavity/
resonator device.

Fig. 1 Air-core-ring and ENZ-metamaterial cladding resonator: (a) 3D illustration and (b) cross-
section view.
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For a typical ring resonator, the resonant optical frequency is fop ¼ m × f0, where m is the
number of modes and f0 is the fundamental frequency. The fundamental wavelength λ0 ¼ C∕f0,
which is the round-trip optical path. Also, λ0 ¼ n × d, where n is the effective refractive index of
the ring path and d is the physical dimension of the resonator. Both temperature and vibration
may change the physical dimension of the resonator. In general, the environmentally induced
frequency change is given by Eq. (1):

EQ-TARGET;temp:intralink-;e001;116;663Δfop ¼ m × Δf0 ¼ −m ×
�
Δn
n

þ Δd
d

�
f0: (1)

In a typical micro-resonator containing SiO2, Si3N4, Si, etc., the change in refractive index,
Δn, can be significant due to temperature changes and vibration-induced strains. In case of
a material with thermal expansion αth, Eq. (1) can be written as Eq. (2):
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Δfop
f0

≅ −αthΔT −
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×
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dn
dT

�
ΔT; (2)

where αth is the thermal coefficient. The change in resonator physical dimension, Δd, can be
significant due to thermal expansion (≅ αthΔT) and deformation by vibration.

In contrast, in a vacuum/air resonator embedded in ENZ metamaterial (e.g., in ENZ cladding
layer), as provided by the embodiments herein, Δn is negligible. The Δd can be less significant
due to the geometry of the material where vacuum is enclosed by the ENZ cladding layer. In
addition, with the ENZ condition, optical phase changes very slowly in the ENZ media, thus
environmentally induced small geometry variations have less effect on optical phase variation,
and therefore generates less phase noise.

3 Self-Referencing-Stabilization Locking of an OFC

In this section, we review our experimental efforts toward realizing an integrated-photonic delay-
line interferometer that can stabilize an OFC. We constructed a prototype 8-m fiber-optic inter-
ferometer that stabilized a commercially available OFC in order to demonstrate that a short-path
interferometer had sufficient sensitivity to significantly reduce the free-running phase noise of
the OFC, thereby enabling low-phase-noise microwave generation. We found that the phase
noise of the tone was reduced by over 35 dB when the OFC was stabilized with the short-path
interferometer, reaching −130 dBc∕Hz at a 1-kHz offset from the 10-GHz carrier frequency.
We also designed and tested tunable couplers that were fabricated by a commercial foundry
(AIM Photonics). These tunable couplers will be used in future work to ensure that the delayed
and non-delayed light components in an integrated-photonic interferometer have similar power.

3.1 Proof of Concept Demonstration Using Fiber Delay-Line Interferometer

The theory of operation of the delay-line-interferometer-stabilized OFC is as follows. The OFC
illuminates a fast photodiode to generate a microwave with a frequency, fm, that is an integer
multiple, m, of the OFC’s repetition rate, fr, such that fm ¼ mfr. Meanwhile, the optical power
at the output of the interferometer, dPðtÞ, is proportional to fluctuations of the OFC’s carrier
frequency, dfcðtÞ, according to dPðtÞ ∼ τgdfcðtÞ, where τg is the group delay imposed by the
interferometer delay. Notably, the carrier frequency of the OFC is nearly an integer multiple, N,
of the repetition rate; it is given by fc ¼ Nfr þ fCEO, where fCEO is the carrier-envelope offset
frequency of the OFC. If fCEO is stabilized so that its noise contribution is negligible, then the
output power of the interferometer is proportional to the noise of the repetition rate, dfrðtÞ,
according to dPðtÞ ∼ NτgdfrðtÞ. This signal is filtered and fed back to the OFC in order to
stabilize the repetition rate. The key point is that the interferometer’s sensitivity to the repetition
rate noise is proportional both to the length of the interferometer delay and to the integer N,
which corresponds approximately to the ratio of the carrier frequency to the OFC’s repetition
rate and is typically on the order of 105 or 106.
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One consequence of the higher propagation loss on an integrated chip is that the path imbal-
ance in the interferometer will be limited to the scale of meters or less. This limitation is also
related to the limited area available on a PIC. By contrast, the delay lines used to stabilize
single-frequency lasers are typically kilometers long since the additional length increases the
interferometer sensitivity.17 Hence, the integrated-photonic interferometer will necessarily have
orders of magnitude lower sensitivity than the typical fiber-optic interferometer. Nevertheless,
we expect that the fact that the interferometer is sensitive to frequency noise at the carrier
frequency—and therefore proportional to the large integer N—will afford us some leeway in
the sensitivity. To prove our concept for a short-path interferometer, we constructed a fiber-
optic prototype interferometer with a 40-ns delay line, corresponding to 8 m of optical fiber.
We stabilized a commercially available OFC with this interferometer and generated a 10‑GHz
microwave signal with phase noise of −130 dBc∕Hz at 1-kHz offset frequency.18

The architecture of the system used to generate the 10‑GHz signal is shown in Fig. 2.
The OFC was a commercially available fiber-based comb from Menlo Systems with a center
wavelength of approximately 1550 nm and a frep of 250 MHz. A commercially available f-2f
interferometer (Menlo Systems) measured the fCEO of the comb. The output of the OFC was split
into two parts.

The first portion of the OFC output was used to generate the 10‑GHz signal. The light from
the OFC entered a fast PIN photodetector (Optilab PD-20), where it generated a microwave
frequency comb, with frequency components at the frep of 250 MHz and its integer harmonics.
We used a microwave bandpass filter (BPF) with a center frequency of 10 GHz to isolate the
40th harmonic and amplified it with a low-phase-noise RF amplifier. Since the frequency of
the microwave output was directly related to the OFC repetition rate, its phase noise was also
directly proportional to the phase noise of the OFC repetition rate.

The second portion of the OFC output was used to stabilize the OFC’s repetition rate, thereby
reducing the phase noise of the 10‑GHz microwave. The light from the OFC passed through an
acousto-optic frequency shifter (AOFS1), which imparted a frequency shift on the OFC accord-
ing to the frequency of the signal at its voltage input. This signal was the fCEO of the OFC and
was provided by the output of the f-2f interferometer. The polarity of the frequency shift
imparted by AOFS1 was chosen such that it canceled the fCEO. The fCEO-free comb light entered
a 0.8‑nm optical BPF and then a fiber-optic Michelson interferometer with a path imbalance of
40 ns. We used single-mode fibers and non-polarization-maintaining components. The Faraday
rotating mirrors mitigated the impact of polarization fluctuations. The output of the Michelson
interferometer illuminated a set of balanced photodiodes, which converted the fluctuations of
the frep into a photocurrent. We used balanced photodiodes to reduce the current associated with
the laser intensity noise. The photocurrent from the balanced photodiodes passed through a loop
filter and fed back to an electro-optic modulator within the OFC cavity in order to stabilize
the frep.

The phase noise of the 10‑GHz microwave generated by the OFC is shown in Fig. 3. When
the OFC was free-running (i.e., when the self-stabilization circuit is turned off), the microwave

Fig. 2 System architecture used to stabilize the OFC. The fCEO is stabilized using an AOFS1 and
the f rep is stabilized by a Michelson interferometer. A 10-GHz microwave signal is generated by
a photodiode.
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had a phase noise of approximately −93 dBc∕Hz at a 1‑kHz offset frequency. When the OFC
was stabilized, the microwave had a phase noise of approximately −130 dBc∕Hz at a 1‑kHz
offset frequency. Hence, the self-stabilization circuit reduced the phase noise of the microwave
by over 35 dB in this offset frequency range. In the stabilized case, the noise at offset frequencies
below 1 kHz is consistent with environmental fluctuations in the laboratory, such as temperature
variations, vibrations, and acoustics. Hence, we believe that with improved packaging, the noise
in this offset-frequency range will decrease.

These results demonstrate that a 40‑ns fiber-optic interferometer has sufficient sensitivity to
stabilize an OFC such that we could generate a microwave signal with ultra-low phase noise. We
expect the interferometer on the integrated platform to introduce additional loss, so further work
may be required to achieve similar performance with a PIC. On the other hand, due to its smaller
size, an integrated circuit can be more easily isolated from environmental fluctuations than the
fiber-optic prototype, which suggests that the noise at some offset frequencies may decrease.
In any case, these results are a significant and encouraging step toward the realization of an
on-chip stabilization circuit.

3.2 Development of Integrated-Photonic Tunable Couplers

Another consequence of the high propagation losses in a photonic integrated waveguide is that
the loss imparted by a centimeters- or meters-long delay line imparts a large power imbalance
between the interferometer paths. Such an imbalance may lead to exaggerated noise contribu-
tions from laser intensity noise. So, we designed, fabricated, and tested a 1-by-2 splitter with a
tunable splitting ratio to balance the optical power of the short delay with a meter-long delay at
the output combining point of the asymmetric interferometer.

The tunable 1-by-2 splitter was fabricated using a commercial integrated-photonics foundry
(AIM-Photonics). We also designed and had fabricated a delay-line waveguide, an asymmetric
Mach–Zehnder interferometer, and balanced photodetectors using the same process. Optical
images of these components are depicted in Fig. 4.

The splitting ratio of the 1-by-2 power splitter is adjusted using a doped silicon heater that
runs parallel to the evanescent coupling region. The silicon heater is partially etched to prevent
mode coupling from the evanescent coupling region into the heater itself, which would otherwise
cause excess loss. The thermal tuning performance is depicted in Fig. 5. This adjustable power
split allows the unequal loss in the two interferometer paths to be offset so that the output power
is roughly equal. The relative splitting ratio can be adjusted by up to −35 dB.

Fig. 3 Single sideband (SSB) phase noise of the 10-GHz microwave generated by the OFC when
free-running (top, blue curve) and when stabilized (bottom, red curve).
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4 Developing ENZ-ITO Metamaterial Based Environment-Insensitive
Devices

We outline our effort of developing the air-core, ENZ-metamaterial cladding resonator as envi-
ronment-insensitive cavity device. First, we need to develop a suitable ENZ metamaterial for
such a device. Although there are many reported ENZ metamaterials such as multi-layer
metal–dielectric super lattice27 and nano-artificial metastructures,28 those metamaterials involve
high-cost fabrication and may not be compatible with Si-photonics and CMOS processing. We
chose ITO that is a practical thin-film material widely used in semiconductor optoelectronic
devices. ITO has shown particular promise because of its potential for low-cost fabrication and

Fig. 5 Output power into one arm of the 1-by-2 power splitter, adjusted using a doped silicon
heater. This adjustment of input power into the two asymmetric MZI arms can balance the net
loss in each arm so that the output power in each path is roughly equal.

Fig. 4 Layout of the integrated lock circuit.
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compatibility with Si-based integrated photonics. However, in all the previously reported ENZ
ITO film studies, the film thicknesses were significantly less than the wavelength region where
ENZ properties occur. In our air-core, ENZ-metamaterial cladding resonator design, ENZ-ITO
film needs to be around one wavelength thick. Since we would like to work at the telecom wave-
length (1.55 μm) in order to benefit from the majority of telecom photonic devices, we need to
develop thick ENZ ITO metafilms.

4.1 Thick ENZ-ITO Meta-Film Development

We fabricated a variety ∼2-μm-thick ENZ ITO films via pulsed DC sputtering onto a SiO2 layer
placed on top of a Si substrate and subsequently thermally annealed them. We performed a sys-
tematic study of these metafilms and discovered a non-uniform variation of the ENZ property.29

The experimental results of these ENZ properties are shown in Fig. 6. Since no equipment
exists that can directly measure an unknown variable (vertically) permittivity, ε, of a multi-layer
material system, we developed a comprehensive method to obtain the permittivity as a function
of vertical location in the film. The method involves taking variable angle spectroscopic ellips-
ometry and fitting the measured data with an appropriate physical model, which also sliced the
thick ITO film region into 30 thin layers.

The different zero-crossing frequencies are shown in Fig. 6(a), for 10 min annealing with
temperatures ranging from 250°C to 400°C. Figure 6(b) shows that for all annealing temper-
atures, the ITO layer permittivity was not constant with respect to the depth. At lower annealing
temperatures, the samples’ permittivity depth profile showed a relatively small amount of
non-uniformity, which is qualitatively consistent with the behavior reported for thin ITO films
as shown in Fig. 6(c). However, at higher annealing temperatures, a sharp transition region
appeared midway through the depth of the ITO film. Above this transition region—i.e., near
the top of the ITO film—the real part of the permittivity was positive, whereas below the tran-
sition region—i.e., near the bottom of the ITO film—the real part of the permittivity was
negative.

To understand this variation behavior, we conducted several microanalysis experiments
on three of our ITO samples: as-deposited, annealed at 250°C, and annealed at 350°C.29

Specifically, we examined the crystallinity and texture using x-ray diffraction (XRD), the crys-
tallite morphology using cross-sectional transmission electron microscopy (TEM), and the
chemical composition using energy dispersive x-ray spectroscopy (EDS). The XRD revealed
that the as-deposited sample was predominantly amorphous, whereas the annealed samples were
polycrystalline with no dominant crystal orientation. The TEM picture as shown in Fig. 7(a)
revealed that the crystal grains in the high-temperature-annealed sample changed size and shape
partway through the film’s thickness, whereas the crystal grains in the low-temperature-annealed
samples showed no such change. The EDS result as shown in Fig. 7(b) further showed that in the
high-temperature-annealed sample, the oxygen concentration increased sharply partway through
the film, whereas the low-temperature-annealed sample showed no such change. These results

Fig. 6 (a) ITO metafilms’ ε1 as function of wavelength for four different annealing temperatures;
(b) ε1 profiles as function of distance from substrate in the 2-μm-thick ITO film for different
annealing conditions; (c) both ε1 and ε2 deep profiles for 250°C annealing.
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indicate that the crystal grain morphology and oxygen vacancy density may contribute signifi-
cantly to the permittivity of the ITO film.

We are developing a new fabrication technique to improve the uniformity of the ENZ ITO
thick films. The goal is to make both ε1 and ε2 closer to zero through the thickness of the film
because higher ε2 will increase the absorption loss for our future device. For this, we deposit the
ITO film with high-power impulse magnetron sputtering (HiPIMS), a relatively recent innova-
tion in sputter deposition tools that allows for more control over film growth. Below is the real
part and imaginary permittivity behavior of 80-min annealed sample at 650°C. The results are
shown in Fig. 8. The permittivity depth profile is still not uniform. The real part of the permit-
tivity crosses 0 at 1557 nm, and the imaginary part of the permittivity remains at 0.39. However,
ε2 is closer to zero through the layer thickness compared with our previous ENZ ITO samples.

We are also studying different annealing techniques such as annealing under oxygen gas to
control formation of oxygen vacancies in ITO. The detailed results will be discussed in future
publications.

4.2 Design and Modeling of Air-Core, ENZ-ITO Cladding Ring Resonator

Light-guiding properties of the air-core, ENZ-ITO-cladding ring resonator were numerically
modeled using a finite-element-method (FEM) eigenmode solver. The ENZ-ITO resonator con-
sists of a bus waveguide and an optical ring cavity. The bus waveguide and ring cavity guide light
in air through a hollow channel embedded in the ENZ-ITO film. The light-guiding mechanism in
the hollow waveguide is based on total external reflection (TER) at the air-ITO interface.

In our TER-based waveguide analysis, the fabricated ITO was modeled as a superlattice with
30 sublayers due to the non-uniform distribution of its dielectric constant. The thickness of the
individual layer was set to be 60 nm. According to the ellipsometry analysis, the fabricated ITO
sample exhibits ENZ properties near the bottom of the film. The region where the absolute value

Fig. 7 (a) Dark field TEM image and (b) EDS plot of the ITO metafilm annealed at 350°C.
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of the real part, ε1, of the dielectric constant of the ITO is less than 1 was defined as a low-epsilon
region. In the air-core waveguide design, this low-epsilon region was used as a cladding layer
directly interfacing the air core. Figures 9(a) and 9(b) present the dielectric constant distribution
of the air-core ENZ-ITO waveguides. Both real and imaginary parts of the dielectric constant
vary gradually along the deposition direction. In this design, a ridge-shape air-core, enclosed by
the ITO film, provides the lateral mode confinement.

Figure 10 shows the calculated electric field distribution of the fundamental transverse mag-
netic mode using a commercial FEM solver, COMSOL MultiphysicsTM. The electric field in

Fig. 9 (a) The real ε1 and (b) the imaginary ε2 parts of the dielectric constant distribution across the
air-core ENZ waveguide.

Fig. 8 The plots of real (black) and imaginary (red) parts of permittivity of ITO metafilms, made by
HiPIMS growth and 80 min of 650°C thermal-annealing: (a) as a function of wavelength and
(b) as a function of distance from the substrate.

Fig. 10 Calculated electric field profile of the guided mode in the air channel waveguide at
λ0 ¼ 1.55 μm.
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the air-core waveguide is described by Eðx; y; zÞ ¼ Eðx; yÞ · e−jβz, where β is the propagation
constant of the guide mode. As shown in the figure, the electric field is tightly confined in the
ridge waveguide. Due to the large refractive index contrast between the core (air) and the clad-
ding (ITO), the evanescent tail of the guided mode rapidly decays in the low epsilon region in
the ITO film. The simulation parameters used in the mode analysis are t1 ¼ t2 ¼ 2 μm, and
w1 ¼ w2 ¼ 4 μm. The calculated effective refractive index of the fundamental mode is β∕k0
is 0.96641 − j 8.3207 × 10−4, where k0ð¼ 2π∕λ0Þ is the wave vector and λ0 is the free-space
wavelength. The estimated propagation loss is 29.3 dB/mm.

4.3 Developing Fabrication Technique for the Air-Core, ENZ-ITO Cladding
Ring Resonator

We have designed several fabrication methods for the air-core, ENZ-ITO-cladding ring resona-
tor. The goal is to use an air cavity as the waveguide core in a ring resonator configuration that is
then covered with 1- to 2-μm-thick ENZ ITO material as cladding for the waveguide as shown in
Fig. 1. The fabrication process of such device structure involves multiple processing steps. The
first processing step is depositing ITO on a SiO2∕Si substrate. The second step is depositing a
sacrificial material layer such as Si or Ge, and lithographically forming a disk or ring for the
resonator. The third step is depositing additional ITO to cover the disk/ring and then annealing it
to achieve the desired ENZ property. The final step is etching small windows on top of the disk to
expose the sacrificial layer and then remove it using XeF2 vapor.

Due to the nature of ENZ materials, there is some absorption that may increase the propa-
gation loss and reduce the Q-factor of the resonator device. Therefore, a major challenge is to
reduce the propagation loss for our air-core/ENZ ITO cladding ring-resonator. For that we take
two approaches in the fabrication: first, from our experimental data as shown in Figs. 6 and 8, the
ENZ ITO layers have lower ε1 and ε2 near the substrate and high ε2 at the top surface, which
increases absorption near the surface. Therefore, we developed a fabrication method for a mush-
room-shaped sacrificial Si/Ge structure, on which we conformally deposit ITO to cover the
“mushroom,” Figure 11 shows the SEM picture of the mushroom-shaped Si disk and pictures
after the ITO is deposited on the sacrificial Si disk. After the annealing process, the ENZ ITO
near the interface with the sacrificial Si/Ge mushroom has lowest ε2. Therefore, once the
sacrificial Si/Ge is removed by the vapor etching process, the air-core ring-resonator will be
surrounded by low loss ENZ ITO material. Second, using the lithographic process, we created
the air-ring resonator with a notched ridge waveguide cross-section shown as Figs. 9 and 10 to
reduce interaction between the optical mode and ITO cladding and reduce the amount of light
leaking into the ITO.

We are in the process of fabrication and testing such air-ring, ENZ-ITO device structures;
further fabrication details and testing results will be reported in future publications.

Fig. 11 (a) An SEM picture of the mushroom-shaped Si disk; (b) and (c) ITO covered Si disk.
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5 Summary/Conclusion

We are developing key building block technologies for a long-holdover CSOC. These include
a self-locking concept to provide short-term stabilization to a micro-resonator-based OFC. For
long-term stabilization, we are developing an environment-insensitive cavity using an ENZ
metamaterial. This chip-scale device can be used as oscillator source or local clock in RF and
communication systems as well as in 5G networks, and it can potentially be integrated with
an optical transmitter and receiver for free-space OTT and ranging to provide positioning,
navigation, and timing with low SWaP-C.
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