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ABSTRACT
A new mathematical model is proposed for the growth of a small necrosis domain in living tissue caused by
local laser irradiation. Laser light is assumed to be delivered to a small internal region where its absorption
causes the temperature to attain high values, leading to immediate tissue coagulation. The coagulation is
treated in terms of irreversible phase transition, i.e., it is assumed to occur after the tissue temperature
exceeds a certain threshold Tcg . The model considers tissue as involving two regions: the necrosis domain,
where the blood perfusion rate is equal to zero, and the normal tissue, which responds to temperature
variations by increasing the perfusion rate. The model takes into account the fact that in normal tissue
changes in temperature are governed by the blood perfusion rate averaged on spatial scales over the length
of the vessels directly controlling heat exchange between the tissue and blood rather than the true perfusion
rate. Two alternative models, the developed one and a model allied to the classic approach to the mathemati-
cal description of local thermal coagulation, are compared. The effects of blood flow nonuniformity and the
delay in vessel response on growth of the necrosis domain are analyzed in detail. © 1997 Society of Photo-Optical
Instrumentation Engineers.

Keywords thermal coagulation; laser coagulation; necrosis growth; perfusion rate; thermoregulation; ther-
mal modeling.
1 INTRODUCTION
Modeling of the necrosis growth caused by thermal
coagulation due to, for example, local absorption of
laser light, is required for optimizing thermal treat-
ments. However, the mathematical description of
bioheat transfer, one of the main elements of this
analysis, is far from being well developed1 because
living tissue is a nonlinear (active) medium with a
complex structure. The bioheat transfer problem be-
comes more complicated when a necrosis domain
occurs in the tissue. Indeed, in this case the blood
perfusion rate j(r,t), as well as the temperature dis-
tribution T(r,t), is extremely nonuniform.2 In addi-
tion, it is necessary to consider heat propagation
not only into the normal tissue but also through a
layer of partly damaged tissue that separates the
necrosis domain and the normal tissue.
In the past few decades, a number of models3–10

for bioheat transfer have been proposed which take
into account different features of living tissue. For a
review, analysis, and criticism of these models, see,
for example, Refs. 1 and 11 through 15. Because of
the discrepancy among them, the use of the follow-
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ing phenomenological bioheat equation generaliz-
ing the results obtained has been suggested:16

ctr t
]T
]t

5¹~keff¹T !2fcbrbj~T2Ta!1qh . (1)

Here T is the tissue temperature, Ta is the tempera-
ture of blood in the large arteries of the systemic
circulation, ct and rt are the density and heat capac-
ity of the tissue, cb and rb are the same quantities
for blood, keff is the effective thermal conductivity,
qh is the heat generation rate caused by metabolic
processes as well as external power sources, and j is
the blood perfusion rate specified as the volume of
blood going through a tissue region of unit volume
per unit time. The cofactor f , ranging from 0 to 1,1 is
due to heat exchange between arterial and venous
blood flowing through the nearest vessels (the
countercurrent effect9), and the effective thermal
conductivity keff exceeding the true thermal con-
ductivity k of the cellular tissue by severalfold17 ac-
counts for the convective heat transport with blood
flow.7,9 In the equation given, the cofactor f and the
ratio keff/k are phenomenological parameters.
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In addition, as an inherited feature, the blood per-
fusion rate j is assumed to be practically uniform
on scales of the order l * characterizing the tissue
heterogeneities from the standpoint of heat transfer.
The value l * is about [k/(ctr tj)]

1/2 (Ref. 5) and for
typical values of the tissue parameters, l *;1 cm.
We note that the same spatial scales also roughly
characterize temperature nonuniformities as fol-
lows from Eq. (1). The blood flow considerably af-
fects the temperature distribution in the tissue dur-
ing laser-induced interstitial thermotherapy.2,18

Living tissue is an active medium, i.e., it responds
to temperature variations by increasing the blood
vessel radius, which gives rise to an increase in the
blood perfusion rate j . The blood perfusion rate can
grow locally by tenfold;19 thus, this effect is signifi-
cant. The live tissue tries to keep its temperature
from exceeding a certain vital boundary T1'44 to
46 °C(T<T+) to prevent thermal damage (see, e.g.,
Ref. 20). So the main increase in the blood perfusion
rate j should fall between the temperature varia-
tions from Ta to a certain value Tvr'T+ ; after the
temperature exceeds the value Tvr , the blood per-
fusion rate j is likely to depend only weakly on
temperature because the blood vessels have ex-
hausted their ability to expand.
In order to analyze temperature distribution,

typically the dependence j(T) obtained experimen-
tally is used. However, whether such a dependence
holds when the temperature distribution becomes
substantially nonuniform is a question. Indeed, in
this case due to the extent of the vessels controlling
heat exchange between blood and cellular tissue,
the dependence j(T) can not only alter its particular
form but can also take a functional form when the
blood perfusion rate j(r) at a given point r is deter-
mined by the whole temperature distribution
$T(r8)% over a certain neighborhood of this point (for
similar behavior of the tissue response to variations
in CO2 concentration, see, e.g., Ref. 21). The specific
details of the mechanism by which living tissue re-
sponds to local temperature variations on scales of
about 1 cm are also a question.21 However, under
strong heating localized on such scales, thermal au-
toregulation can be effectively implemented
through the response of the microcirculatory bed to
reduced O2 partial pressure or increased concentra-
tion of metabolism products (e.g., CO2, H

+, and ad-
enosine diphosphate (ADP)) because higher tem-
peratures result in intensified metabolism with a
higher O2 consumption. In addition, this explains a
possible delay of the tissue response to temperature
variations and enables the corresponding delay
time to be estimated at several minutes (see, e.g.,
Ref. 21).
When considering living tissue with a necrosis

domain, one should take into account the effect that
partial damage has on heat propagation. However,
the models2,22,23 based on expressions similar to

j5zjn~T !, (2)
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where z is the fraction of undamaged tissue and
jn(T) is the blood perfusion rate that would occur
in tissue without damage, can be justified at the
qualitative level only. So, if one would like to de-
scribe heat propagation through partly damaged
tissue in detail, then a more sophisticated theory
should be developed.
In this paper we propose a model for heat trans-

fer in living tissue containing a necrosis domain
that allows for the aforementioned features. The
main purpose is to describe this model and to ana-
lyze its basic characteristics, comparing it with the
models developed previously and allied to the clas-
sic approach to the mathematical description of lo-
cal thermal coagulation (see, e.g., Refs. 2 and 18),
rather than to simulate the time course of a real
treatment. So we confine ourselves to analysis of
thermal coagulation in living tissue without tumors
and consider the growth of a ‘‘one-dimensional’’
necrosis domain.

2 MODEL BACKGROUND
In order to obtain a more rigorous equation govern-
ing evolution of the temperature, we should take
into account the fact that living tissue is an active
heterogeneous medium organized hierarchically. In
other words, to obtain the desired macroscopic bio-
heat equation from the microscopic equations indi-
vidually governing heat diffusion in cellular tissue
and convective heat transport via blood inside ves-
sels, we have to take into account the following.
First, heat propagation in living tissue on scales of
about 1 cm is mainly controlled by blood flow
through the vascular network in spite of the fact
that its relative volume is small5 (living tissue as a
heterogeneous medium). Second, blood vessels
make up a highly branching vascular network ap-
proximately of a tree form, so distribution of blood
flow over the vascular network as well as over the
tissue domain is characterized by strong correla-
tions between different levels of hierarchy and also
by spatial correlations (living tissue as a hierarchi-
cally organized medium). Therefore, when averag-
ing the microscopic equations, we have to regard
the vascular network as a whole rather than as a
collection of individual vessels independent of each
other. Third, the hydrodynamic resistance of ves-
sels to blood flow can depend on time due to the
tissues reaction to temperature variations (living
tissue as an active medium).
In Ref. 24 we developed an averaging technique

that has enabled us to reduce the microscopic gov-
erning equations to a system of macroscopic equa-
tions that regard living tissue as a continuous me-
dium with certain properties. In particular, we have
shown in Ref. 24 (see also Refs. 25 through 27),
where we reproduced some results obtained first
by Chen and Holmes,5 that the macroscopic bioheat
equation actually deals with the tissue temperature
T(r,t) averaged on spatial scales about the mean
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length lv of the vessels directly controlling heat ex-
change between cellular tissue and blood. The
equation obtained for the tissue temperature prac-
tically coincides with the bioheat equation (1) with
the replacement of the true perfusion rate j(r) by
one jv(r) averaged on scales lv . The characteristic
length lv of averaging in turn depends on the local
value jv(r) of the averaged perfusion rate, namely,
lv;[k/(ctr tjv)]

1/2. Therefore, the relationship be-
tween the averaged blood perfusion rate jv(r) and
the true one j(r) is specified by a certain nonlinear
equation, which can be approximately represented
in the following form24:

jv2¹~ lv
2¹jv!5j . (3)

In addition, it has been found that the constants f
and F are specified by the vascular network archi-
tectonics only, in particular, F;1/f;[ln(l/a)]1/2,
where l/a is the mean ratio of length to radius of
individual blood vessels. For real microcirculatory
beds, a typical value of the ratio l/a is about 40,21

which enables us to estimate these constants as F;2
and f;0.5.
In order to describe local thermoregulation, we

need to specify how each vessel responds to the
corresponding piece of information characterizing
the state of the tissue, in particular its temperature.
So, in deriving the equation relating the blood per-
fusion rate j(r,t) to the tissue temperature T(r,t), we
make use of the following physiological data.21 Lo-
cal autoregulation of blood perfusion in living tis-
sue on scales of about 1 cm is due to expansion or
contraction of the blood vessels making up a single
microcirculatory bed, and blood redistribution over
this vascular network is mainly controlled by a
large group of arteries that differ in length signifi-
cantly. The reaction of the microcirculatory bed is
governed by receptors responding to variations in
CO2 partial pressure, H+ concentration, or other
metabolism products. However, as mentioned in
Sec. 1, under strong heating such receptors can play
the role of effective thermosensors, supplying the
microcirculatory bed with essential information.
Obviously, none of the vessels receives complete
information on the tissue state, so there must be a
certain cooperative mechanism for information self-
processing by which the behavior of different ves-
sels is kept consistent with each other so that the
tissue can respond properly.
We have shown24,26 that such a cooperative

mechanism of self-regulation can be implemented
through the vessels response to the blood tempera-
ture in the corresponding veins. The receptors men-
tioned above are located directly in the cellular tis-
sue as well as embedded in the walls of vessels,
including veins.21 Those embedded in the vessel
walls are able to measure the concentration of the
metabolism products directly in blood and thus to
effectively measure its temperature. For small ves-
sels (arteries and veins), the position of the recep-
JOU
tors governing their behavior is not a factor. This
allows us to make use of the proposed cooperative
mechanism of self-regulation in the description of
tissue response to local and strong heating.
Under the adopted assumptions it turns out24,26

that for normal tissue, the dependence of blood per-
fusion rate j on temperature T can be approxi-
mately described by a local equation relating the
values j(r), T(r) taken at the same point r until the
temperature approaches to the vital boundary T+ .
This is due to the cooperative mechanism of self-
regulation which involves the response of each ves-
sel to the corresponding piece of information and
the coordination of the behavior of all the vessels
by the self-processing of information. The adequate
self-processing of information is implemented
through heat conservation as blood mass inside the
relatively large veins of the microcirculatory bed.26

The vascular network whose behavior is governed
by this mechanism can supply each region of the
cellular tissue with blood at a rate that meets its
individual demand, and different regions of the cel-
lular tissue do not interfere with one another. The
equation obtained for the tissue response is of the
form

t
]j
]t

1j
T12T
T12Ta

5j0 , (4)

where t is the delay time of the tissue response and
j0 is the blood perfusion rate, provided the tissue is
not affected. This result also holds true for living
tissue containing a small necrosis domain24,28 be-
cause the temperature of blood in veins whose
length exceeds their size by severalfold is not sen-
sitive to the presence of a necrosis domain.
Mathematical description of heat transfer in

partly damaged tissue is a more complicated prob-
lem. For example, partial damage of the vascular
network embedded into such tissue can give rise to
domains with extremely low blood perfusion that
have a fractal geometry.29 However, in a math-
ematical description of thermal coagulation, the
particular regularities of heat propagation in partly
damaged tissue are of little importance. In fact, dur-
ing thermal treatment based on thermal coagula-
tion, high temperatures on the order of 100 °C are
attained and the typical time of the treatment is
several minutes. At such temperatures, the charac-
teristic time t thr of thermal coagulation depends
heavily on the temperature; in particular, for T=65,
70, and 75 °C, the values of t thr are 100, 20, and 5 s,
respectively.30 The mean time during which the ne-
crosis domain can grow substantially is about 2 min
(for j0;0.01 s−1) and the temperature drops from a
value of about 100 °C at its center to the normal
temperature ('37 °C) at distant points. Therefore,
under such conditions, the region in which the ther-
mal coagulation is under way is a thin layer com-
pared to the necrosis domain. This layer separates
the necrosis from the normal tissue and is char-
97RNAL OF BIOMEDICAL OPTICS d JANUARY 1997 d VOL. 2 NO. 1
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acterized by a narrow temperature interval (Tcg−D,
Tcg+D), where Tcg'60 to 70 °C and D;5 °C. The lat-
ter enables us to ignore the thickness of this layer,
i.e., to treat it as the boundary of the necrosis do-
main and to ascribe to it the fixed temperature Tcg .
In other words, within the framework of such an

approach, thermal coagulation is considered in
terms of an irreversible phase transition. Moreover,
owing to the discreteness of the vessel arrange-
ment, the temperature distribution in living tissue
exhibits random nonuniformities that are not de-
scribed by Eq. (1). The amplitude of these nonuni-
formities turns out to be also on the order of 5 °C
for such a high overheating of the tissue.24 The
presence of large vessels can increase the amplitude
of temperature nonuniformities.8,31 Thus it seems to
be meaningless to analyze in detail the properties of
the partial damage layer based on mean field equa-
tions similar to (1). Keeping in mind the aforesaid,
we propose the following model.

3 FREE BOUNDARY MODEL

We assume that laser light is delivered to an inter-
nal region of living tissue where, owing to its ab-
sorption, the temperature attains high values
(above 60 to 70 °C), leading to immediate thermal
coagulation of the tissue, including coagulation of
blood in the vessels passing through this region. It
should be pointed out that in the given model, the
laser light plays solely the role of a source of heat,
so this model also holds for local coagulation
caused by other mechanisms of superficial heating,
for example, electrocoagulation. Heat diffusion into
the surrounding tissue causes its further coagula-
tion, giving rise to growth of the necrosis domain.
Thermal coagulation is treated in terms of the irre-
versible phase transition that occurs after the tem-
perature exceeds a certain threshold Tcg;60 to
70 °C. Inside the necrosis domain, heat diffusion is
controlled only by thermal conduction of the cellu-
lar tissue. Heat propagation into the surrounding
tissue is governed by both thermal conduction and
blood flow, with the latter causing the renormaliza-
tion of thermal conductivity, k→keff , as well as giv-
ing rise to an effective heat sink. If a large artery or
vein is located in the immediate vicinity of the ne-
crosis region, then blood flow in this single vessel
can affect heat transfer substantially and the bio-
heat equation should be modified.8,31 The case de-
scribed, however, deserves an individual investiga-
tion.
The tissue with necrosis is considered as involv-

ing two regions: the necrosis domain Qcg where the
blood perfusion rate is equal to zero,

j~r,t !50 for rPQcg , (5)

and the normal tissue Qn that responds to tempera-
ture variations by locally increasing the blood per-
fusion rate j(r,t). In addition, we allow for the fact
that the tissue response can be delayed. Blood ves-
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sels can expand to only a certain extent as the tem-
perature increases. When it becomes high enough,
T.Tvr , the blood perfusion rate j(r,t) attains a large
but finite value jmax and remains approximately
constant. Taking into account expression (4), we de-
scribe this behavior of normal tissue by the equa-
tion

t
]j
]t

1jF~T !5j0 for rPQr . (6)

Here t is the delay time of the tissue response and
the function F(T) is of the form

F~T !5H e1~12e!
Tvr2T
Tvr2Ta

for T,Tvr

e for T.Tvr

, (7)

where the ratio e=j0/jmax is a small parameter, e<1.
In the necrosis domain Qcg , the tissue tempera-

ture obeys the heat diffusion equation for solids:

ctr t
]T
]t

5k¹2T1qh , (8)

where k is the intrinsic tissue conductivity and qh is
the rate of heat generation due to laser light absorp-
tion. Inside the normal tissue the temperature is
governed by the equation

ctr t
]T
]t

5Fk¹2T2fcbrbjv~T2Ta!1qh . (9)

Here jv is the blood flow rate averaged on spatial
scales on the order of [k/(ctr tjv)]

1/2 and the con-
stants F>1 and f<1 are the order of unity. At the
interface G between the necrosis domain and nor-
mal tissue, the temperature and the heat flux are
assumed to have no sharp changes, i.e., the tem-
perature distribution meets the following boundary
conditions:

TuG105TuG20 , F¹nTuG105¹nTuG20 . (10)

Inside the normal tissue, the temperature cannot
exceed the coagulation temperature Tcg , i.e.,

T~r,t !,Tcg for rPQn , (11)

and at the interface G, the boundary value Ti is ei-
ther equal to the coagulation temperature, Ti5Tcg ,
or rigorously less: Ti,Tcg . The former case takes
place when the temperature near the interface G
closely approaches the value Tcg and the interface
has to move in order to keep up the boundary tem-
perature Ti inside the interval Ti<Tcg . In the sec-
ond case the interface is fixed. Both these conditions
can be formally described by the expression

~Ti2Tcg!S ]T
]t U

G

2
]Ti

]t D 50, (12)
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where the boundary temperature Ti(s,t) is treated
as a function of the interface coordinates s and the
time t . For points distant from the necrosis domain,

Tu`5Ta . (13)

Finding the relationship between the averaged
and true blood flow rates, jv(r,t) and j(r,t), we have
taken into account the fact that the scale lv of aver-
aging, in its turn, depends on the local value of
jv(r,t). The latter and expression (3) enable us to
write

jv2
lk

ctr t
¹2 ln jv5j , (14)

where l is also a constant on the order of unity.
Equation (14) should be subjected to a certain

boundary condition at the interface G because it
makes no sense to average the blood perfusion rate
over the necrosis domain impermeable to blood.
The physical layer separating the necrosis domain
and the normal tissue where the local vascular net-
work is not damaged is complex in structure and
contains a spatial increase of the blood perfusion
rate from zero to the value in the normal tissue. In
order to avoid the problem of analyzing the blood
perfusion rate in this layer, we take into account the
following simplifying circumstance. On one hand,
the typical size of the necrosis domain formed dur-
ing a thermal therapy course and the characteristic
length of temperature variations are of the same or-
der, about 1 cm.2,11 Thus, particular details of spa-
tial variations in the blood perfusion rate on scales
much less than 1 cm are not a factor. On the other
hand, the damaged part of the vascular network
located inside the necrosis domain is most probably
made up of an artery and vein that previously sup-
plied this region with blood as a whole, and shorter
vessels formed by their branching. Indeed, the
mean volume of living tissue supplied by a single
small artery (or vein) of a fixed length l is about
l3.21,29 Thus, the regions where total blood perfusion
is directly controlled by different vessels of fixed
length do not overlap substantially and the archi-
tectonics of the microcirculatory bed can be ap-
proximately represented as a binary tree embedded
uniformly in the cellular tissue.29 Therefore, the re-
gion containing the part of the vascular network in
which blood flow is significantly disturbed because
of the necrosis formation does not substantially ex-
ceed the necrosis domain. The latter allows us to
identify the given layer with the interface G, and to
deal with a sharp increase in the blood perfusion
rate at the necrosis interface. The desired boundary
condition imposed on the averaged blood perfusion
rate jv must obey the law of blood conservation,
which in this case can be written as

E
Qn

drjv~r,t !5E
Qn

drj~r,t !. (15)
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So in order to fulfill identity (15) we have to set the
normal gradient of the averaged blood perfusion
rate equal to zero at the interface G

¹njvuG150. (16)

We note that this assumption will not hold if a large
vessel passes through the necrosis domain. How-
ever, the probability of this event is small and this
case should be analyzed individually.
The system of expressions (5) through (16) makes

up the proposed model. The purpose of this paper
is to consider the characteristic features of the pro-
posed model, to compare it with the models2,18

used previously, and to analyze in detail typical
properties of local thermal coagulation described
by the given model. This allows us to confine our-
selves to the simplest situation which, nevertheless,
characterizes a real process reasonably enough.

3.1 ONE-DIMENSIONAL PHANTOM

Let us consider a one-dimensional tissue phantom
in which the necrosis domain begins to grow at the
point x=0. For the sake of simplicity, the depth of
laser light penetration into the tissue is assumed to
be small. Under these conditions, heat generation
can be effectively described in terms of the tem-
perature Tb5T(0) fixed at the point x=0 and we
may confine our analysis to the half-space $x>0%.
Let us, for example, set the value Tb equal to 100 °C,
which reflects the possible control over the tem-
perature by water vaporization when the heat gen-
eration rate becomes high enough. In addition, for
the sake of simplicity, we ignore the difference be-
tween the density and heat capacity of the cellular
tissue and blood, setting ct5cb5c and r t5rb5r .
In order to compare the given free boundary

model with the models developed previously, we
also consider the growth of the necrosis phantom
described by the following system of equations that
reflects the essence of such models. In the region
x>0, the temperature distribution T(x ,t) and the
fraction z(x ,t) of undamaged (live) tissue obey the
equations

cr
]T
]t

5k
]

]x F F̃~z!
]T
]x G2zfcrj~T2Ta!, (17)

and

]z

]t
52zv~T !, (18)

where v(T) is the rate of tissue damage due to ther-
mal injury and the function F̃(z)5z(F21)11. Tak-
ing into account the experimental data30 for thermal
injury, we specify the dependence v(T) (where T is
in degrees Celsius) by the expression
99RNAL OF BIOMEDICAL OPTICS d JANUARY 1997 d VOL. 2 NO. 1
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Fig. 1 The size R=x0.5 of the necrosis domain (a) and the temperature T0.5 at its effective boundary (b) versus time for different values of the
parameters $e=1, (curve 1)%; $e=0.2, t=2 min, (curve 2)%; $e=0.2, t=0, (curve 3)%; (l=2).
v~T !50.23expFT260
3.6 G~1/min!, (19)

which corresponds to the following temperature
dependence of the threshold exposure time t thr (in
seconds): t thr=100 exp$(64−T)/3.6%. It should be
noted that expression (19) is an approximation of
the Arrhenius dependence v(T)}exp[−(DH/RT)]
chosen for the sake of convenience. For the blood
perfusion rate j , the governing equation is assumed
to be of the same form as Eq. (6).
In the next section we compare the two models

using the following typical values of the physical
parameters: Ta=37 °C, Tvr=45 °C (see Ref. 6),
k;7310−3 W/cm3K, c;3.5 J/g3K, r;1 g/cm3,
and j0;0.3 min−1. In addition, we also set the con-
stants F=2 and f=0.5.

4 THERMAL COAGULATION AS AN
IRREVERSIBLE PHASE TRANSITION
In order to analyze the growth of a necrosis domain
in the framework of Eqs. (6), (17), and (18), we
solved them numerically and kept track of the
points x0.2, x0.5, and x0.8 specified by the equalities
z=0.2, 0.5, and 0.8, respectively. In this way the dy-
namics of the necrosis growth is characterized by
the time dependence of the coordinates x0.2, x0.5,
and x0.8 (in millimeters) and the corresponding
temperatures (in degrees Celsius) T0.2, T0.5, and T0.8.
Different conditions representing various possible
limiting cases have been considered. Namely, tissue
phantoms without a response to temperature varia-
tions, with immediate, and with a delayed response
were analyzed. In the first case the blood perfusion
rate remains unchanged, j5jv5j0 . For tissue with
an immediate response (t=0), the perfusion rate can
attain large values directly at the beginning of the
necrosis growth, whereas for tissue with a delayed
response (t>0), this increase will occur only after a
lapse of time on the order of t. It could be expected
that in all three cases the characteristics of the ne-
crosis growth would be different. Nevertheless, as
seen in Figure 1, this statement is justified only with
regard to the time dependence of the necrosis size
R(t)[x0.5(t). (Here necrosis is treated as a region
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where z<0.5.) It turns out that the time dependence
T0.5(t) of the temperature at the necrosis boundary
(interface) G is practically the same for all these dif-
ferent cases. Therefore, at least for the tissue under
consideration, the necrosis interface can be effec-
tively endowed with certain specific properties,
which allows us to treat thermal coagulation in
terms of an irreversible phase transition. The latter
means that the temperature at the necrosis interface
meets certain conditions specifying its value and
thereby controls temperature distribution in the tis-
sue. Time variations in the temperature distribution
in turn control the motion of the necrosis interface.
In mathematical terms such behavior of necrosis

growth is described by the free boundary problem
which relates, in general, the temperature Ti at the
necrosis interface to its normal velocity qn and may
be the boundary value of the temperature gradient,
¹nTu i

Ti5Ti~qn ,¹nTu i!. (20)

However, for necrosis growth due to thermal co-
agulation, this relationship must be of the logarith-
mic form because of the exponential dependence of
the coagulation rate v(T) on the temperature. So,
remarkable variations in the dynamics of the necro-
sis growth can lead to a small alteration of the in-
terface temperature, which is demonstrated in Fig-
ure 1. In this paper we deal with the simplest
version of such a free boundary model for local
thermal coagulation. It is characterized by the as-
sumption that the temperature at the necrosis
boundary remains constant. A more sophisticated
free boundary model will be developed elsewhere.
The given approximation of expression (20), Ti5Tcg
(where Tcg is fixed), in spite of some roughness,
enables us to single out the main characteristics of
local thermal coagulation. This is because the spa-
tial distribution of the tissue temperature and, thus
the necrosis growth, is not sensitive to small varia-
tions in the interface temperature Ti .
Particular details of the necrosis growth from this

standpoint are illustrated in Figure 2, which shows
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Fig. 2 The time dependence of the coordinates x0.2, x0.5, and x0.8 of the points at which the undamaged tissue fraction z=0.2, 0.5, and 0.8
(a1 through a3) and the time dependence of the corresponding temperatures T0.2, T0.5, and T0.8 (b1 through b3) are functions of time for
different values of the parameters e, t. In a1 through a3 the thick lines labeled FBM are the position R of the necrosis domain interface in the
free boundary model with the temperature coagulation Tcg shown in b1 to b3. For a1 and b1, $e=1%; for a2 and b2, $e=0.3, t=0%; for a3 and
b3, $e=0.3, t=3 min%; (l=2).
the time dependence of the quantities x0.2, x0.5, and
x0.8, and T0.2, T0.5, and T0.8 for a tissue phantom
without thermoregulation (jmax/j0=1), one with an
immediate strong response to temperature varia-
tions (jmax/j0=5, t=0), and for tissue where a delay
in the temperature response has a pronounced ef-
fect on thermal coagulation (t=2 min for the given
values of physical parameters, see the next section).
As seen in Figures 2(b1) through 2(b3), the de-

crease of the temperature T0.5 slows sufficiently
quickly (within approximately 1 to 2 min) and the
temperature T0.5 remains inside the interval 60 to
70 °C for about 5 to 10 min, which is a typical du-
ration t tr of thermal treatment based on thermal co-
agulation. The width of this interval is a sixth
smaller than the typical value of the tissue over-
heating, Tb2Ta;60 °C. So to a first approximation,
the temperature T0.5 may be treated as a fixed con-
stant Tcg . Such behavior is actually an additional
justification of the proposed free boundary model.
In addition, from this it follows that the coagulation
temperature Tcg , being a phenomenological param-
JOU
eter of this model, can be estimated from the ex-
pression

t thr~Tcg!5
1

v~Tcg!
;t tr . (21)

Indeed, under such conditions thermal coagulation
proceeds at the temperature Tcg and the value of
1/v(Tcg) is approximately the time it takes for the
live tissue located in the necrosis region to be
damaged.30 Because of the strong temperature de-
pendence of v(T), this estimate gives us the value
of Tcg to sufficient accuracy. In addition, to make
the comparison of the two models clearer, we have
used in the simulation the value Tcg=60 °C found
from expression (21) (for t tr;5 min) rather than the
value of Tcg approximating the dependence T0.5(t)
to the best degree.
Another characteristic of thermal coagulation is

illustrated in Figures 2(a1) through 2(a3). Compar-
ing the time dependence x0.5(t) with the curves
‘‘FBM’’ [describing the motion R(t) of the necrosis
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interface in the proposed model], we see that there
are two stages of necrosis growth. The former cor-
responds to the time interval (0,tcg), where
tcg;1/jmax;4 min. At this stage the necrosis do-
main grows quickly and in the free boundary
model the interface G reaches its limit position Rlim .
This saturation of the interface displacement is due
to the temperature distribution becoming station-
ary. At the latter stage (from tcg to t tr), the necrosis
domain grows slowly and in the free boundary
model it is fixed. In other words, the proposed
model makes the difference in these stages more
pronounced. If the treatment is continued, the real
necrosis domain will grow further and after a lapse
of 20 to 30 min the necrosis domain will deviate
significantly in form from that predicted by the
given model. However, such a prolonged treatment
is typically used to produce a hyperthermia effect
(without visible injury) rather than to cause thermal
coagulation directly.30 Nevertheless, in this case the
free boundary model can also be applied after hav-
ing been modified.
It should be noted that the existence of the two

stages does not obviously result from the depen-
dence T0.5(t) because in the model based on Eqs.
(17) and (18), the necrosis continues to grow slowly
at the second stage too. However, as follows from
the model developed, these stages differ from one
another not only in the necrosis growth rate but
also in the behavior of the temperature distribution.
The slow stage is characterized by a quasi-
stationary temperature distribution. In other words,
at this stage, time scales on which the size R of the
necrosis domain increases substantially are much
larger than time scales on which the temperature
distribution becomes steady state, provided the ne-
crosis boundary is fixed. This property is caused by
the exponential dependence of the damaged tissue
rate v(T) on the temperature. At the fast stage,
these scales are of the same order.
Concluding this section, we note that the devel-

oped model predicts the dynamics of thermal co-
agulation to the same accuracy as does any model
directly dealing with evolution of the field z. In fact,
as discussed in Secs. 1 and 2, any theory based on
equations similar to (17) and (18) cannot reliably
describe in detail a layer with partial damage. The
motion of this layer is represented in Figures 2(a1)
through 2(a3) by the region bounded by the curves
x0.2(t) and x0.8(t). So the two models may be
treated as practically equivalent if the difference
ux0.5(t)−R(t) u does not greatly exceed the value
ux0.8(t)2x0.2(t)u. As seen in Figures 2(a1) through
2(a3), this is the case except for the beginning of the
growth and times longer than 10 min.
Moreover, this result actually warrants the feasi-

bility of applying the system of Eqs. (17) and (18) to
an analysis of local thermal coagulation. Indeed,
one may describe the temperature distribution in-
side the layer of partially damaged tissue with an
equation similar to (17) only if the necrosis growth
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does not depend substantially on particular proper-
ties of heat propagation through this region. It is
this fact which is demonstrated in Figure 2. Under
such conditions, either of the two models can be
applied; however, it would be more consistent to
use a free boundary model that ignores the thick-
ness of this layer, i.e., treats it as the boundary of
the necrosis domain. The development of a more
sophisticated free boundary model that also allows
for time variations of the interface temperature Ti
will be the subject of later papers.

5 EFFECT OF TEMPERATURE REGULATION
In this section, based on our model, we study the
characteristic properties of thermal coagulation
caused by the tissue response to temperature varia-
tions. First we consider a tissue with an immediate
response, corresponding to t=0 in Eq. (6). In this
case the limit radius Rlim of the necrosis domain
attained during the coagulation is determined by
the stationary temperature distribution. In particu-
lar, for the tissue phantom without thermal regula-
tion (e=1), the blood perfusion rate is constant,
j5j0 , and as follows from Eqs. (8) and (9)

Rlim
e515F Fk

crfj0
G1/2 Tb2Tcg

F~Tcg2Ta!
;1 cm. (22)

For a tissue with thermal regulation, expression
(22), after the replacement j0→jmax , may be also
used to estimate the value Rlim , thus

Rlim;F Fk

ctr tfjmax
G1/2. (23)

The dynamics of coagulation under such conditions
is represented in Figure 3 for different values of the
parameter e=j0/jmax .
Figure 3(a) shows the size R of the necrosis do-

main as a function of time. The higher the tissue
response, the smaller the necrosis domain and the
shorter the fast stage of necrosis growth. The dura-
tion of the latter stage is actually the characteristic
time tcg during which the size of the necrosis do-
main attains values about Rlim . Comparing the nu-
merical values of the corresponding quantities, we
find that the duration of the fast stage can be esti-
mated by the expression

tcg;
1

fjmax
, (24)

which conforms to the general properties of heat
transfer in living tissue. Indeed, in the given model,
as follows from Eqs. (8) and (9), the time it takes for
the temperature distribution to become a steady-
state one is about fjmax and the establishment of this
steady-state (in reality, quasi-stationary) tempera-
ture distribution is actually the essence of the fast
stage.
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Fig. 3 The size R of the necrosis domain versus time (a) and the temperature distribution (b) for different values of e. Curves 1, 2, and 3
correspond to e=1, 0.3, and 0.1, respectively. (t=0, l=2).
Figure 3(b) shows the temperature distribution
for a tissue without thermoregulation (curve 1) and
for a tissue with a strong immediate response
(curve 2, jmax/j0=10). In order to compare them
with each other, lengths are measured in units of
the corresponding necrosis size. It follows from this
that, in contrast to the time dependence R(t), the
tissue response to heating does not affect the form
of temperature distribution. This result is in agree-
ment with the conclusion made in the previous sec-
tion regarding the properties of the temperature at
the necrosis boundary.
When the tissue responds to temperature varia-

tions intensively enough (e!1), the blood perfusion
rate j(x) becomes substantially nonuniform. In this
case the averaged perfusion rate jv(x) differs sig-
nificantly from the true one j(x), which has a defi-
nite effect on the growth of a small necrosis. The
latter is illustrated in Figure 4.
Figure 4(a) compares the dynamics of the necrosis

growth described by the given model and by the
same model where, however, Eq. (14) is omitted
and the replacement jv→j is made. Figure 4(b)
shows the distribution of the tissue temperature
T(x), the true blood perfusion rate j(x), and the
averaged one jv(x) that occur when the tissue re-
sponds in such an intensive way. In this case, as
seen in Figure 4(b), the averaged blood perfusion
rate can be twice as slow as the true one. The latter
JOU
has a definite effect on the necrosis growth because
ignoring the difference between jv and j gives a
lower estimate of the necrosis size [Figure 4(a)].
Now we consider how the delay in the tissue re-

sponse can affect thermal coagulation. This effect is
remarkable when the delay time t is comparable
with the duration of the fast stage tcg . So we may
confine ourselves to values t;tcg .
The difference in dynamics of the growth of the

necrosis domain for tissues responding immedi-
ately (t=0) and with a certain delay (t;2 min) is
illustrated in Figures 5 and 6.
As seen in Figure 5(a), when the tissue response

is delayed, the necrosis domain initially, grows
quickly, keeping ahead of a necrosis domain grow-
ing in the tissue with the immediate response. Then
the growth of the necrosis domain is suppressed
and its form thereafter remains unchanged. It
should be noted that in this case the saturation of
the necrosis domain growth is not due to the tem-
perature distribution becoming stationary but to an
increase in the blood perfusion rate after a time
lapse of about t. Under such conditions there is
enough time for the size R of the necrosis domain
to attain values of on the order of Rlim

e=1}[1/j0]
1/2

until the blood perfusion rate increases substan-
tially. These values could not be attained if the tis-
sue response were not delayed. So after the blood
perfusion rate increases, subsequent growth of the
Fig. 4 (a) The size R of the necrosis domain as a function of time described by the stated free boundary model (curve 1) and by the same
model within the replacement jv→ j (curve 2). (b) The distribution of the temperature T, the true perfusion rate j, and the averaged one jv
corresponding to curve 1 at time t=2 min. (e=0.1, t=0, l=2, Tvr=50 °C).
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Fig. 5 (a) The size R of the necrosis domain versus time for a tissue responding immediately (curve 1) and with a certain delay (curve 2, t=2
min). Curve 3 represents the R(t) dependence for a tissue without thermal regulation. (b) The distribution of the temperature, true and
averaged perfusion rates at different time moments t=1 min (curve 1) and t=3 min (curve 2) for the tissue with delayed response (e=0.2, l=1,
t=2 min).
necrosis domain becomes impossible, the tempera-
ture Ti at the interface G must fall below Tcg , and
the necrosis domain has to cease to grow. This be-
havior of the interface temperature is illustrated in
Figure 6. It should be noted that such a saturation
of the necrosis growth for real tissues seems to be
more pronounced because a real necrosis continues
to grow at the slow stage until the blood perfusion
rate becomes high enough.
Figure 5(b) shows the distribution of the tempera-

ture and blood perfusion rate at different moments
for a tissue with a delayed response. As before, the
length is measured in the corresponding values of
the necrosis size in order to compare these distribu-
tions. As time elapses, the perfusion rate increases
due to the tissue response. In contrast to this behav-
ior of the perfusion rate, the form of the tempera-
ture distribution remains unchanged. The compari-
son of this result with that obtained for the tissue
immediately responding to temperature variations
[Figure 3(b)], and the results of the previous sec-
tion, leads us to the conclusion that the form of the
temperature distribution occurring in tissue during
necrosis growth depends weakly on the particular
values of the physical parameters. This conclusion,
in particular, forms the basis for applying promis-
ing variational techniques to an analysis of thermal
coagulation caused by laser–tissue interaction.

Fig. 6 The temperature (curve 1) and the averaged perfusion rate
(curve 2) at the necrosis interface G versus time for a tissue with a
delayed response. Curve 3 shows the corresponding time depen-
dence of the necrosis size R( t). (t=1.4 min, e=0.07, l=0.5).
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It should be noted that the conclusion concerning
the universal form of the temperature distribution
has been made by analyzing necrosis growth in tis-
sue phantoms that differ only in the properties of
thermoregulation. The other physical parameters
(for example, tissue thermal conductivity k and the
initial value j0 of the blood perfusion rate) take on
particular values in the present analysis. This raises
the question of whether the stated conclusion will
hold if we change these parameters also. However,
by choosing the appropriate units of time and
length for aggregating such parameters, we can re-
write the governing equations in the dimensionless
form. Thus their particular values are not the im-
portant factor.

6 CLOSING REMARKS

The main results obtained can be briefly summa-
rized as follows: Thermal coagulation involves two
stages, fast and slow. In the former, the necrosis
domain grows quickly and its size attains values on
the order of Rlim estimated by expression (23). The
duration of this stage is about tcg as determined by
expression (24). The latter is characterized by a sub-
stantially slower growth of the necrosis domain. At
this stage the temperature distribution in the tissue
is quasi-stationary.
All through the course of treatment (except for a

small area at its beginning), the temperature at the
boundary of the necrosis domain remains approxi-
mately constant provided the tissue response to
temperature variations is not delayed too long.
When the temperature response is strong enough,

which gives rise to a substantial local increase in the
blood perfusion rate, its distribution becomes ex-
tremely nonuniform. In this case in modeling ther-
mal coagulation, one should take into account the
fact that the temperature distribution is governed
by the averaged blood perfusion rate rather than
the true one.
The delay in the tissue response on time scales on

the order of tcg can significantly affect thermal co-
agulation. In this case, in particular, the duration of
the fast stage is controlled by the delay time t. The
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limit size Rlim attained by the necrosis domain un-
der such conditions is determined by the initial
value of the blood perfusion rate j0 rather than val-
ues (jmax@j0) near the necrosis domain at the sec-
ond stage due to the tissue temperature response.
In addition, in this case the second stage is charac-
terized by even slower growth of the necrosis do-
main because the temperature decreases at its
boundary. This is because such values of Rlim could
not be attained if the tissue response were immedi-
ate.
The form of the temperature distribution occur-

ring in tissue during necrosis growth caused by
thermal coagulation due to laser light absorption
depends weakly on the particular values of physi-
cal parameters. The given property forms the basis
for applying different variational techniques to an
analysis of local thermal coagulation.
Models that deal directly with temperature distri-

bution inside the layer of partially damaged tissue
may be used to describe the necrosis growth caused
by local thermal coagulation because the necrosis
growth is not sensitive to particular regularities of
heat propagation through this layer. Nevertheless,
we think that it would be more consistent to use a
free boundary model that regards the layer of par-
tially damaged tissue as an infinitely thin interface
of the necrosis domain.
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