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ABSTRACT

We present a numerical study of classical particles obeying a Langevin equation moving on a solid bcc(110)
surface. The particles are subject to a two dimensional periodic and symmetric potential of rectangular symmetry
and to an external dc field along one of the diagonals of the structure. One observes a bias current with a
component orthogonal to the dc field. The drift velocity (magnitude and direction) and diffusion of the particle
depend on the surface potential and external field parameters, the temperature, and the friction coefficient.
We numerically explore these dependences. Because the potential perceived by a particle as well as its friction
coefficient depend on the nature of the particle, so might the angle between the particle velocity and the dc field.
This scenario may thus provide a useful particle sorting technique.
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1. INTRODUCTION

The motion of atoms, vacancies, excitations, molecules, clusters of molecules and colloidal particles on surfaces is
an active area of research due to its theoretical interest and technological relevance. One area of recent activity
(experimental, numerical, and theoretical) concerns the observation that even for large clusters of molecules, long
jumps spanning many lattice sites may in some cases be the dominant contributor to the motion.1–12 In recent
work13, 14 we have suggested that these long, even Lévy-like, motions can be described by ordinary Langevin
dynamics and do not require the input of any extraordinary assumptions about the driving fluctuations.

A related avenue of extensive investigation has dealt with the transport properties of particles in a symmetric
periodic potential subject not only to thermal effects but also to external forces. This interest lies in the ex-
tensive range of important physical applications that include Josephson junctions,15, 16 superionic conductors,17

adsorbates on crystal surfaces,12, 18, 19 colloidal spheres,20–22 and polymers diffusing at interfaces23 among many
others.24 A constant external force produces a so-called “tilted potential” or “tilted washboard potential,” and
the further addition of a periodic force gives rise to the “rocked tilted potential”.24–26

A rather different but theoretically related area of recent activity surrounds a variety of sorting phenomena
when mesoscopic particles in a thermal bath and in the presence of an external force or flow field move on a
surface modeled as a periodic two dimensional potential. This work is motivated by recent experiments in colloidal
transport on a two-dimensional periodic potential landscape generated with an array of optical tweezers,20–22
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and in DNA separation using microfabricated technology.27, 28 Sorting is possible when the direction of motion
of the particles deviates from that of the external force or flow field with a deviation angle that depends on
particle characteristics, most notably particle size. Sorting of a mixture of particles is then possible through
collection at different angles. The efficiency of these sorting devices depends on the particle interactions with
the surface, the external forces, and the temperature. We have recently presented a description and analysis of
many of the observed phenomena, again on the basis of ordinary Langevin dynamics.29

The models mentioned above primarily focus on potential wells arranged in a square lattices. If an external
force in such a lattice points along a symmetry axis (e.g. along [1,0] or [0,1]), the particle current will simply
follow the direction of the force.26, 29 Note that these symmetry axes are also directions along which potential
minima are connected via saddle points. While it is interesting to characterize the velocity and dispersion of
the particles in this case,26 there is no possibility of a component of the particle current in any other direction,
and therefore sorting of particles is not possible with this force. A deviation of the direction of motion of the
particles from that of the force on a square lattice requires that the force not point along a symmetry axis.29

In this paper we investigate the direction and dispersion of particle motion when we change the geometry of
the lattice. In particular, we choose a bcc geometry described below and again point a dc field along a direction
that connects potential minima via saddle points, i.e., a diagonal (which, as we will see, is not a symmetry
axis). We show the appearance of a current component perpendicular to the applied force, and study the
relative magnitudes of the parallel and perpendicular components and their dispersions as a function of various
parameters of the system. Since there is a nonzero angle between the force and the particle current, we note that
sorting is in principle possible in this system. This work thus provides some insight into the effects of lattice
geometry on these phenomena.

In Sec. 2 we present the model. Our numerical results are presented and explained in Sec. 3. We end with a
summary in Sec. 4.

2. THE MODEL

The motion of a collection of non-interacting classical Brownian particles of mass m in this scenario is described
by a standard Langevin equation in a two-dimensional periodic potential V (x, y) of characteristic length scales
λx and λy driven by an external force f(t) in the presence of thermal noise and the associated dissipation. The
equations of motion for the components (x, y) of the position vector r are

mẍ = − ∂

∂x
V

(
x

λx

,
y

λy

)
− µẋ + fx + ξx(t)

mÿ = − ∂

∂y
V

(
x

λx

,
y

λy

)
− µẏ + fy + ξy(t),

(1)

where a dot denotes a derivative with respect to t. The parameter µ is the phenomenological coefficient of friction,
and the ξi(t) are mutually uncorrelated white (thermal) noises that obey the equilibrium fluctuation-dissipation
relation,

〈ξi(t)ξj(t
′)〉 = 2µkBTδijδ(t − t′). (2)

In our previous work we set the length scales equal to one another (λx = λy ≡ λ), which we do in this
paper as well) and chose a square lattice with both dc and ac forces along a direction in which the minima
of the potentials are connected by saddle points. For a square lattice this is a symmetry axis (e.g., along the
[1,0] direction).26 In the context of sorting phenomena on a square lattice, we considered a dc force along an
arbitrary direction explicitly away from this symmetry direction so as to obtain a particle current that deviates
from the direction of the force.29 Here we look at a different lattice geometry. In particular, we choose the
periodic potential

V (x, y) = V0

[
1 + sin

(
2πx

λ

)
sin

(
2πy√

2λ

)]
. (3)

V0 is the height of the saddle point barriers located at x = jλ/2 and y = kλ/
√

2 for all integer pairs (j, k). This
potential can represent a bcc(110) surface,30 and is shown in Fig. 1. As one can see in the figure, the minima
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Figure 1. Two dimensional potential Eq. (3) used for our simulations. Black/white areas correspond to maxima/minima.

are connected by saddle points along the diagonals, which in this case are not orthogonal. Thus these diagonals
are not symmetry axes of the system (while the x and y directions are). Throughout this work we choose the
constant external force f to lie along a diagonal.

The equations of motion for this system can be written in terms of the scaled dimensionless variables

rx = x/λ, ry = y/λ τ =
√

V0t/
√

mλ (4)

as follows:

r̈x = − ∂

∂rx

V(rx, ry) − γṙx + Fx + ζx(τ)

r̈y = − ∂

∂ry

V(rx, ry) − γṙy + Fy + ζy(τ).

(5)

A dot denotes a derivative with respect to τ , V(rx, ry) is the dimensionless potential, and the scaled noise obeys
the fluctuation-dissipation relation

〈ζi(τ)ζj(τ
′)〉 = 2γT δijδ(τ − τ ′). (6)

This scaling serves to stress the fact that for a fixed potential there are only three independent parameters in
this model: the scaled temperature T , the scaled dissipation γ, and the scaled magnitude F of the external
force, given respectively by

T =
kBT

V0

, γ =
µλ√
mV0

, F =
fλ

V0

. (7)

Note that since the potential can be generated analytically and the equations of motion are continuous, the
system is infinite and it is not necessary to specify any particular boundary conditions.

3. NUMERICAL RESULTS

The observables of interest to us are the mean particle velocity and the diffusion tensor that reflects the spread
in the particle trajectories. The averages below indicated by brackets 〈·〉 are over thermal fluctuations and over
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Figure 2. Typical realizations of trajectories in the presence of a constant force along a system diagonal. Parameter
values: λ = 4, T = 0.2 and F = 0.8. Left panel: γ = 2. The angle between the force and the average velocity is
approximately 10◦. Right panel: γ = 0.2. The average velocity and force are essentially parallel.

an ensemble of particles. We define the mean velocity component along direction u as

vu = lim
τ→∞

〈ru〉
τ

, ru = r(t).u, (8)

where r(t) is the particle displacement and u is a unit vector that we choose to lie either parallel or perpendicular
to F . The diffusion coefficients of interest are

Du = lim
τ→∞

〈[ru(τ) − 〈ru(τ)〉]2]〉
2τ

. (9)

In particular, when u is parallel (perpendicular) to the external dc force we call the associated quantities v‖ (v⊥),
and D‖ (D⊥).

We study these observables as a function of the strength of the force for different friction coefficients and for
different temperatures. As noted earlier, one of the most interesting features of this problem is that the particle
trajectory deviates from the direction of the force when the latter lies along a system diagonal. We highlight
this deviation in our discussion.

Underlying the appearance of a component of the velocity perpendicular to the applied force along a lattice
diagonal is the following physical picture, clearly illustrated by the typical trajectories shown in Fig 2. The
straight solid line is the force along a diagonal. A particle is pulled by the force, and along the way it falls into
subsequent wells from which it emerges as a result of thermal fluctuations which allow it to move over saddle
points connecting the wells. While the particle preferentially moves forward following the force, it is nevertheless
also attracted to wells in the direction of the other diagonal. On occasion the thermal fluctuations allow it to
overcome the preferential direction imposed by the force. Since the diagonals are not orthogonal, this off-line
motion preferentially occurs to one side of the force direction. After such a detour the motion along the force
resumes, until an off-line step occurs once again. In the figure the force points along the left-to-right diagonal and
as a result the off-line motions occur preferentially toward the left. Clearly, in the higher friction realization in
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Figure 3. v‖, v⊥, D‖, and D⊥ vs F . Results shown are for different friction coefficients: γ = 0.4 (solid), γ = 2 (dotted),
and γ = 4 (dashed). The temperature is T = 0.2. The inset in the third panel expands the scale so that the variations of
D‖ can be seen for all three cases.

addition to the velocity component along the force, the particle also acquires a velocity component perpendicular
to the force. Also clearly, the velocity deviation is strongly dependent on friction, a dependence we return to
later. While we expect the parallel components of the velocity and diffusion tensor not to be too strongly affected
by geometry, that is, to be similar to those observed in a square lattice with a force along a symmetry axis,26

the components perpendicular to the direction of the force should be sensitive to this geometry (and are in fact
nonzero only because of the geometry).

Next, in Fig. 3, we present results for the velocity and diffusion tensor components as a function of F for
various friction coefficients. The first panel shows the dependence of v‖ on F for different values of the friction
coefficient. The dependences here are quite similar to those encountered in a system of ordinary square geometry
and a force along a symmetry axis, and can be understood as follows.24, 26 At very low forces the particle
does not move, i.e., it is locked in place. At very high forces, the particle is simply pulled along by the force.
The interesting nonlinear regimes occur at intermediate forces, determined by the friction coefficient. In the
high friction case the unlocking occurs when the tilt of the surface potential produced by the external force
is sufficiently large for the minima of the potential to disappear; the transition thus occurs when the minima
become marginally stable states (or, for large but finite friction, near this point), and is insensitive to the value
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Figure 4. v‖/v⊥ as a function of friction for different values of the force: F = 0.4 (solid), F = 0.8 (dotted), and F = 1.6
(dashed). The temperature is T = 0.2.

of the friction. The particle thus acquires net motion when there are no potential barriers. In the low friction
case the particles have inertia and can therefore escape the potential wells into a running state even while there
are still potential minima. However, the depth of the well where this becomes possible is sensitively dependent
on the friction, since it involves a balance between the loss of energy due to friction and the gain in kinetic energy
due to the external force. This leads to a transition that sets in at lower forces and leads to higher velocities
in the low friction case than in the high friction case. The third panel in Fig. 3 shows the parallel component
of the diffusion tensor, whose behavior is again similar to that found in a system of square geometry, and the
peak and width can be understood as follows.24, 26 A typical particle trajectory moves randomly from locked
to running back to locked, and so on. During a locked interval the velocity is zero, and diffusion around zero
velocity is typically small. During a running interval the velocity is not zero, and again the diffusion around the
nonzero velocity is typically small. As a result the apparent diffusion about the average velocity v‖ may be large,
somewhat artifically, because this average velocity is not the most probable velocity of a particle. In other words,
in this regime the velocity distribution is bimodal rather than unimodal about the average velocity,24, 26, 31 and
the calculated D‖ is the full width of this bimodal distribution and not reflective of the width of each of the two
modes. Note that the increased diffusion is consistent with the linear response theory result for a free particle
that associates D with v through the derivative relation D = kBT dv/dF . Our particle is neither free, nor is the
force in the transition region particularly small, but nevertheless large diffusion is associated with a steep slope
of velocity vs F that here comes about because of switching between different velocities. With increasing friction
the transition region moves to higher forces and becomes less abrupt. The associated maximum of the diffusion
coefficient then also moves to higher forces and becomes less pronounced.

The new features are the perpendicular components of the velocity and diffusion tensor. The second panel in
Fig. 3 shows the perpendicular mean velocity component for various values of the friction. A number of features
are noteworthy. First, this velocity component vanishes at zero force (when the particle does not move) and at
large force (when the particle simply gets dragged along in the direction of the force), and peaks between these
two extremes. The position of the optimal force for perpendicular motion essentially coincides with the force at
which the variation of the parallel component of the force is greatest, and therefore also with the force where
D‖ also peaks. The fourth panel shows the corresponding perpendicular diffusion coefficient D⊥. The peak here
is again associated with the regime of greatest variation in both velocity components as well as in the parallel
diffusion tensor component. Again, these peaks reflect the parameter regime where there are frequent transitions
between the locked and running regimes of particle motion.

For particle sorting purposes one is interested in the ratio v⊥/v‖, which here is different for different friction
coefficients (hence providing, in principle, a tool to separate particles with different friction coefficients). As a
function of F for a fixed γ this ratio is essentially monotonically decreasing, which is consistent with the results
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Figure 5. v‖, v⊥, D‖, and D⊥ vs F for different temperatures: T = 0.2 (solid), T = 0.25 (dotted), and T = 0.3 (dashed).
The friction coefficient is γ = 0.2.

in Fig. 3. As a function of γ for different values of the force, the ratio is shown in Fig. 4 (compare with the
trajectories in Fig. 2. It increases from zero and asymptotes at a value that depends on the force. Note that
for the parameters used to generate the trajectories in Fig. 2 the ratio v⊥/v‖ is vanishingly small for the lower
friction, where inertia plays an important role leading to long particle jumps between trapping events, and where
the fluctuations are weak. The ratio is nearly 0.2 for the higher friction, which corresponds to the angle of
approximately 10◦ quoted in the trajectory figure.

Interesting behavior is evident when we examine the velocity and diffusion tensor as a function of temperature
for low friction, as shown in Fig. 5. The first and third panels showing the parallel components again behave in
a way similar to the velocity and diffusion coefficient in a square lattice when the force is applied along the [1,0]
direction. The principal effect on v‖ of lowering the temperature is to sharpen the transition region, essentially
without moving its location. The center of the transition region, regardless of temperature, is located near the
value of F that defines the abrupt transition as temperature goes to zero. However, the effect on the diffusion
coefficient is far more pronounced. While the location of the peak is essentially temperature independent, as we
would expect from the fact that the velocity transition remains localized around the same value of the force, the
peak grows with decreasing temperature, that is, diffusion is stronger as temperature decreases, again consistent
with the sharpening of the velocity transition. This behavior is consistent with our earlier description of the
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diffusion in the switching region between locked and running states.

We have already noted why the perpendicular velocity component vanishes at low and high forces and
therefore (given that it can be nonzero) peaks in between. The position of the peak is fairly insensitive to
temperature changes, consistent with the reasoning for the parallel component. The height of the peak, on the
other hand, here depends strongly on and decreases with increasing temperature, i.e., increasing temperature
tends to counteract the effect of geometry. This is reasonable, since increasing thermal fluctuations would tend to
diminish the difference in the “up” and “down” motions illustrated in the trajectory of Fig. 2. The perpendicular
component of the diffusion tensor again peaks at a location that is insensitive to temperature changes, as with all
the other quantities discussed above, but again the height of the peak now increases with increasing temperature.

4. SUMMARY

We have presented a numerical study of the motion of Brownian particles on a bcc(110) surface with a dc force
along a diagonal defined by potential wells connected by saddle points. Because this is not a symmetry axis
of the lattice, the resulting current of particles develops a component perpendicular to this direction, v⊥, in
addition to the parallel component v‖, so that the net average motion of the particles is not parallel to the
applied force. The deviation angle between the force and the particle current depends on the parameters of the
model, notably the friction coefficient, thus pointing to a procedure to separate particles with different friction
coefficients. We studied the behavior of the mean velocity components v‖ and v⊥ as a function of the applied
force, the temperature, and the friction coefficient. There is dispersion about each of these components due to
thermal fluctuations, and we also studied the associated diffusion tensor components D‖ and D⊥ as a function
of applied force, temperature, and friction coefficient. While our analysis is so far only numerical, we are able to
provide qualitative explanations for the observed behaviors.
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