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ABSTRACT. Significance: Ultrasonic transducers facilitate noninvasive biomedical imaging and
therapeutic applications. Optoacoustic generation using nanoplasmonic structures
provides a technical solution for highly efficient broadband ultrasonic transducer.
However, bulky and high-cost nanosecond lasers as conventional excitation
sources hinder a compact configuration of transducer.

Aim: Here, we report a plasmon-enhanced optoacoustic transducer (PEAT) for
broadband ultrasound generation, featuring an overdriven pulsed laser diode
(LD) and an Ecoflex thin film. The PEAT module consists of an LD, a collimating
lens, a focusing lens, and an Ecoflex-coated 3D nanoplasmonic substrate (NPS).

Approach: The LD is overdriven above its nominal current and precisely modulated
to achieve nanosecond pulsed beam with high optical peak power. The focused
laser beam is injected on the NPS with high-density electromagnetic hotspots, which
allows for the efficient plasmonic photothermal effect. The thermal expansion of
Ecoflex finally generates broadband ultrasound.

Results: The overdriven pulsed LD achieves a maximum optical peak power of
40 W, exceeding the average optical power of 3 W. The 22 μm thick Ecoflex-coated
NPS exhibits an eightfold optoacoustic enhancement with a fractional −6 dB band-
width higher than 160% and a peak frequency of 2.5 MHz. In addition, the opto-
acoustic amplitude is precisely controlled by the optical peak power or the laser
pulse width. The PEAT-integrated microfluidic chip clearly demonstrates acoustic
atomization by generating aerosol droplets at the air–liquid interface.

Conclusions: Plasmon-enhanced optoacoustic generation using PEAT can pro-
vide an approach for compact and on-demand biomedical applications, such as
ultrasound imaging and lab-on-a-chip technologies.
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1 Introduction
Ultrasound allows biocompatible and contactless bioimaging and therapeutic applications such
as ultrasound imaging,1 high-intensity focused ultrasound treatment,2 and ultrasonic drug
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delivery.3 Conventional ultrasonic transducers often utilize piezoelectric (PZT) materials, which
induce ultrasonic waves through mechanical vibration.4 However, the resonant behavior of PZT
materials results in a narrow bandwidth5 and low transmission efficiency due to a large imped-
ance mismatch between PZT (Z > 30 × 106 kg · m−2 · s−1) and biological tissues
(Z ∼ 1.5 × 106 kg · m−2 · s−1).6 In addition, they require complicate steps of micropackaging
such as precise mechanical dicing7 and multiple electrical connections.8 Micromachined ultra-
sonic transducers (MUTs) such as piezoelectric MUTs9 and capacitive MUTs10,11 have emerged
as an alternative solution for technical limitations of conventional PZT transducers. Wafer-scale
microfabrication of highly integrated MUTs allows high-density transducer arrays with control-
lable resonant frequency and broad bandwidth through variation of diaphragm sizes.12 However,
they still exhibit technical bottlenecks such as multiple electrical connections,13 undesirable
crosstalk,14,15 and complicated microfabrication.16

Optoacoustic transducers with nanosecond pulsed light and micro/nanoscale optical absorb-
ers have introduced an approach for broadband ultrasound generation. The pulsed light excitation
induces light-to-heat conversion in the optical absorbers, resulting in thermal expansion and sub-
sequent generation of broadband ultrasound in the surrounding medium.17,18 High optoacoustic
pressure is achieved by combining optical absorbers with high light absorption and thermal
expanding polymer matrices with a high coefficient of thermal expansion (CTE).19–21

Polydimethylsiloxane (PDMS) serves as a prevalent thermal expanding layer due to the high
CTE of 266.5 μm · m−1 · °C−1, compared with water and other polymers.22 Optical absorbers
can be further improved with carbon-based materials such as carbon-nanotubes,23–25 candle soot
nanoparticles,26 and carbon nanofibers,27 or metallic surfaces using Al,28 Cr,29,30 and Au.31

Recently, plasmonic nanostructures with localized surface plasmon resonance have been
employed in optoacoustic transducers, thanks to the plasmonic photothermal effect as well
as ultrathin thickness.32–34 Electromagnetic hotspots between two-dimensional or three-dimen-
sional nanostructures significantly enhance the optoacoustic amplitude.35,36 For example, three-
dimensional Ag nanostructures significantly enhance the optoacoustic amplitude by more than
20 times compared to a polymeric substrate without plasmonic structures.19 However, the
common utilization of bulky Q-switched Nd:YAG lasers with nanosecond pulse widths
(PWs; <10 ns) impedes the system integration into a compact optoacoustic module, despite the
progress in optical absorbers. Optoacoustic generation utilizing semiconductor light sources,
such as light-emitting diodes37–39 and laser diodes (LDs),40–42 have been limited to optoacoustic
imaging applications and have not led to substantial progress in transducer development.

Here, we report compact plasmon-enhanced optoacoustic transducer (PEAT) for broadband
ultrasound therapy and imaging applications by utilizing an overdriven pulsed LD. Figure 1(a)
illustrates the working principle of PEAT including a thin polymer film-coated nanoplasmonic
substrate (NPS) and a single LD. The LD is overdriven above the nominal current level by apply-
ing high pulsed current, resulting in pulsed laser beam with high optical peak power. The focused
laser beam is injected on the NPS with highly dense electromagnetic hotspots, which allows
efficient photothermal conversion due to high light absorption. The thermoelastic expansion
of polymer thin film finally generates broadband optoacoustic waves.

2 Materials and Methods

2.1 Nanofabrication of Ecoflex-Coated NPS
The nanofabrication procedure of Ecoflex-coated NPS is shown in Fig. 1(b). Glass nanopillar
arrays (GNAs) were fabricated using thermal evaporation and annealing of Ag thin film and
reactive ion etching of the glass wafer. Nanogap-rich NPS was fabricated using thermal evapo-
ration of Au thin film on the GNAs, and the plasma-enhanced chemical vapor deposition
(PECVD) of SiO2. The Ecoflex-coated NPS was finally prepared by spin-coating and curing
the Ecoflex prepolymer. Figure 1(c) shows the cross-sectional scanning electron microscopy
(SEM) image of the Ecoflex-coated NPS. The fabricated Ecoflex-coated NPS exhibits a high
optical absorption, primarily due to the abundant nanogaps between Au nanoislands, as shown
in Fig. S1 in the Supplementary Material. The fully packaged PEAT module consists of an LD;
an aspheric lens for collimation, i.e., collimating lens (CL); a plano-convex lens for focusing, i.e.,
focusing lens (FL); and an Ecoflex-coated NPS. The chip size of Ecoflex-coated NPS
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(9 mm × 9 mm) was adjusted to the module size of the LD. The physical dimension of the PEAT
module shows 14 mm × 25 mm × 14 mm, as shown in Fig. 1(d).

2.2 Plasmon-Enhanced Optoacoustic Generation System Using Overdriven LD
A LD-based plasmon-enhanced optoacoustic generation system is shown in Fig. 2. Figure 2(a)
shows the experimental setup for underwater optoacoustic measurement using overdriven LD. A
current pulse train of a nanosecond PW is generated by a high current short pulse driver based on
the preconfigured square waveform. The input current level is adjusted with the current control
voltage to exceed the nominal current level of the LD. A laser beam is initially collimated with
the aspheric lens, and then precisely focused on the back side of the NPS with the plano-convex
lens. The NPS induces thermal expansion of the thin Ecoflex film and leads to ultrasound gen-
eration. The ultrasonic waves are measured with a hydrophone positioned at 45 deg to avoid
baseline distortion resulted from high optical power, as shown in Fig. S2 in the
Supplementary Material. Note that the hydrophone detects all optoacoustic waves at the incident
angles below 20 deg, exhibiting the maximum sensitivity for optoacoustic waves at the normal
incidence. The optoacoustic signal is finally amplified with a 20-dB preamplifier and acquired
with a LabVIEW interface via an oscilloscope with an input impedance of 50 Ω.43 The time-
domain waveforms were converted into the frequencies using Fourier transform in MATLAB.
The optical image of experimental setup is shown in Fig. S3 in the Supplementary Material.
Figure 2(b) shows the time-lapsed waveforms of input current and laser beam. The optical pulse
train is highly correlated with the current pulse train, operating at a frequency (f) of 30 kHz and a
PW of 70 ns. Note that turn-on delay times of 40 and 2 ns longer optical PW result from the
throughput delay of the high current short pulse driver44 and the inductance on an LD packag-
ing,41 respectively. Figure 2(c) shows the input current and the optical peak power of the over-
driven LD depending on the current control voltage. The input current linearly increases with the
current control voltage, whereas the optical peak power tends to level off due to the carrier
leakage.45 The optical peak power reaches 40 W at the input current of 33 A, which is approx-
imately an order of magnitude higher than the average optical power of 3 W at the nominal
current of 2 A.

Fig. 1 PEAT using focused pulsed laser beam. (a) A schematic illustration of PEAT including
Ecoflex-coated NPS. (b) Nanofabrication procedures of Ecoflex-coated NPS using solid state dew-
etting of Ag thin film, reactive ion etching, Au thin film evaporation, PECVD of SiO2, and spin-coat-
ing of the thin Ecoflex film. (c) Cross-sectional SEM images of the Ecoflex-coated NPS. (d) Fully
packaged PEAT module consisting of an LD, a CL, an FL, and an Ecoflex-coated NPS.
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3 Results and Discussion

3.1 Plasmon-Enhanced Optoacoustic Generation via PEAT Depending on Thin
Ecoflex Film

Plasmon-enhanced optoacoustic generation has been experimentally demonstrated with PEAT,
as shown in Fig. 3. Figure 3(a) shows optoacoustic signals from 25 μm thick Ecoflex-coated NPS
and a bare NPS under illumination with a laser beam with the optical peak power of 33 W and
PW of 70 ns at a current control voltage of 50 VDC. The measured optoacoustic signals exhibit
distinct positive and negative peaks of compressive and tensile waves due to thermoelastic expan-
sion and contraction of the thin polymer film. The Ecoflex-coated NPS significantly enhances the
optoacoustic amplitude by a factor of 4 due to the large thermal expansion of Ecoflex. Note that
Ecoflex has a CTE of 284.2 μm · m−1 · °C−1 and thus the optoacoustic amplitude is enhanced by
a ratio of CTE of Ecoflex to PDMS, as shown in Table S1 in the Supplementary Material.22

Fig. 3 Plasmon-enhanced optoacoustic generation via PEAT depending on thin Ecoflex film.
(a) Optoacoustic signals from 25 μm thick Ecoflex-coated NPS and a bare NPS. (b) Peak-to-peak
voltage of optoacoustic signals and (c) frequency responses from Ecoflex-coated NPSs with vari-
ous thicknesses of Ecoflex.

Fig. 2 LD-based plasmon-enhanced optoacoustic generation system. (a) Experimental setup for
light modulation and underwater optoacoustic measurement. (b) Time-lapsed input current wave-
form and optical peak power of the LD. (c) Input current and optical peak power of the overdriven
LD depending on the current control voltage.
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Figure 3(b) shows peak-to-peak voltages of optoacoustic signals from Ecoflex-coated NPSs
depending on the thickness of Ecoflex. The thicknesses of Ecoflex were controlled with different
speed of spin-coating, ranging from 1000 to 6000 rpm. Thinner Ecoflex films enhance opto-
acoustic signals by enabling rapid heat transfer from the NPS, converting highly confined ther-
mal energy directly into optoacoustic waves without thermal diffusion.46 Figure 3(c) shows the
frequency responses of the corresponding optoacoustic signals. The measured ultrasonic
frequencies from the Ecoflex-coated NPS exhibit an eightfold amplitude increase at 2.5 MHz
compared with the bare NPS. The experimental results clearly show that the peak frequency is
inversely proportional to the square root of the thickness of thermal expanding layer.47 For in-
stance, the 22 μm thick Ecoflex film increases broadband and high-frequency components with a
fractional −6 dB bandwidth higher than 160%, and a peak frequency of 2.5 MHz. Note that the
fractional −6 dB bandwidth of conventional PZT transducer is around 45%.6 In contrast, the
95 μm thick Ecoflex film shows relatively lower frequencies around 1.8 MHz with the fractional
−6 dB bandwidth of 230%.

3.2 Plasmon-Enhanced Optoacoustic System via PEAT Depending on Laser
Modulation

Laser modulation dependent plasmon-enhanced optoacoustic generation has been experimen-
tally demonstrated with PEAT, as shown in Fig. 4. Figure 4(a) shows the optoacoustic signals

Fig. 4 Plasmon-enhanced optoacoustic generation via PEAT depending on laser modulation.
(a) Optoacoustic signals from the Ecoflex-coated NPS induced by collimated and focused laser
beams. (b) Peak-to-peak voltages of optoacoustic signals depending on the laser fluence.
(c) Optoacoustic signals from the PEAT depending on the PW. (d) Frequency responses of the
optoacoustic signals and maximum amplitude depending on the PW (inset).
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using collimated and focused laser beams with an optical peak power of 33 W and a PW of
160 ns. A large illumination area of collimated beam [full width at half maximum (FWHM)
of beam diameter: 800 μm] generates ultrasound in a wide area beyond the focal spot of focused
beam (FWHM of beam diameter: 16 μm). The focused laser beam increases the optoacoustic
amplitude by 1.7 times compared with the collimated laser beam due to intense laser fluence
confined within the focused spot. Figure 4(b) shows peak-to-peak voltages of optoacoustic sig-
nals depending on the laser fluence of the focused beam. The laser fluence was modulated by
controlling the current control voltage within the range of 5 to 70 V. The peak-to-peak voltage of
optoacoustic signals linearly increase with the laser fluence, which demonstrates the strong lin-
earity between the optoacoustic pressure and the laser fluence.48 Note that the optoacoustic
amplitude is proportional to the temporal derivative of the corresponding optical pulse, as shown
in Fig. S4 in the Supplementary Material.49 Figure 4(c) shows the optoacoustic signals depending
on the PW of focused laser beam. The optoacoustic signals become broaden and increase in the
amplitude with the PW. As the laser PW increases, the positive peak saturates at the PW of
120 ns, as shown in Fig. S5 in the Supplementary Material, whereas the negative peak rises
due to the enhanced Gruneisen coefficient caused by the temperature increase in the Ecoflex
film.50,51 The optoacoustic amplitude at the PWof 200 ns corresponds to a peak-to-peak pressure
around 0.6 kPa at the 2 mm distance from the Ecoflex-coated NPS. The Nd:YAG nanosecond
laser generates optoacoustic amplitude enhanced by two orders of magnitude compared to the
overdriven LD. However, the intense output pulse energy from the laser results in damage and
delamination of Ecoflex thin film, as shown in Fig. S6 in the Supplementary Material. The opto-
acoustic amplitude can be further improved by employing structural modifications such as
composite thermal expansion layer52 or high absorbance optical cavity.29 Figure 4(d) shows the

Fig. 5 Experimental demonstration of acoustic atomization via PEAT. (a) Experimental setup for
acoustic atomization (left) and optical images before and after pulsed laser irradiation for 30 s
(right). (b) Experimental setup for verifying the influence of photothermal effect on acoustic atomi-
zation (left), and optical images before and after heating the microfluidic chip (right). The light-to-
heat conversion of NPS results in negligible expansion of trapped bubbles without forming an air
slug in the microchannel. (c) Optical images before and after the irradiation of pulsed laser beam
on the PDMS microfluidic chip bonded to bare glass wafer. All scale bars represent 100 μm.
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frequency responses of the corresponding optoacoustic signals. The maximum amplitude exhib-
its a quadratic growth with the laser PW and finally levels off due to thermal energy saturation.53

As a result, the optimal thickness of Ecoflex and the laser modulation allow the precise control of
the output optoacoustic waves, particularly the optoacoustic amplitude and the peak frequency.

3.3 Experimental Demonstration of Acoustic Atomization via PEAT
The acoustic atomization of liquid inside a microfluidic chip has been experimentally demon-
strated with PEAT, as shown in Fig. 5. Figure 5(a) shows the experimental setup for acoustic
atomization in PDMS microfluidic channel and the optical images before and after the laser
irradiation for 30 s. A PDMS-coated NPS is utilized instead of the Ecoflex-coated NPS for ensur-
ing tight adhesion between the microfluidic chip and PEAT by oxygen plasma treatment. The
PDMS microfluidic chip features microgroove structures for trapping air bubbles, whereas the
middle microchannel is filled with injected fluid such as deionized (DI) water. The irradiation of
pulsed laser beam with a frequency of 5 kHz and a PW of 100 ns generates the movement of
trapped microbubbles and aerosol microdroplets at the air–liquid interface. The coalescence and
expansion of moving microbubbles blocks the flow of DI water by forming an air slug at the
middle of microchannel. Figure 5(b) shows the influence of photothermally generated heat on the
acoustic atomization. The surface temperature NPS was measured using an infrared thermo-
graphic camera. The NPS reaches the maximum temperature of 34.5°C after 2 min of pulsed
laser beam irradiation. The microfluidic chip bonded to the PDMS-coated NPS was placed
on a hotplate set at 40°C, exceeding the maximum temperature of 34.5°C. The mild heat of
40°C results in negligible bubble expansion without the formation of an air slug. Figure 5(c)
shows the influence of pulsed laser beam on the acoustic atomization. The pulsed laser beam
is directed onto the PDMS microfluidic chip bonded to a bare glass wafer with perfect optical
transmittance. The minimal impact of pulsed laser beam ensures that high-frequency optoacous-
tic waves induce the atomization of liquid. As a result, the acoustically driven microfluidic atomi-
zation facilitates various microfluidic functions such as the development of microbubble-based
microvalves, without additional pumping units.

4 Conclusions
We have successfully demonstrated the PEAT for broadband ultrasound generation. The PEAT
features the LD, the aspheric lens, the plano-convex lens, and the Ecoflex-coated NPS. The over-
driven pulsed LD achieves the maximum optical peak power of 40 W, which is ∼10-fold higher
than the average optical power of 3 W. The experimental results clearly show that the optimal
Ecoflex thickness and laser modulation allow for precise control of the optoacoustic waves, par-
ticularly the amplitude and the peak frequency. Finally, optoacoustic waves within the PEAT-
integrated microfluidic chip induce atomization at the air–liquid interface and create an air slug in
the end. This optoacoustic transducer can provide a platform of ultrasound generation for on-
demand and compact biomedical applications, including ultrasound imaging and lab-on-a-chip
technologies.
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