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Abstract. Coffee is an important crop in tropical regions of the world; about 125 million people
depend on coffee agriculture for their livelihoods. Understanding the spatial extent of coffee
fields is useful for management and control of coffee pests such as Hypothenemus hampei
and other pests that use coffee fruit as a host for immature stages such as the Mediterranean
fruit fly, for economic planning, and for following changes in coffee agroecosystems over
time. We present two methods for detecting Coffea arabica fields using remote sensing and
geospatial technologies on WorldView-2 high-resolution spectral data of the Kona region of
Hawaii Island. The first method, a pixel-based method using a maximum likelihood algorithm,
attained 72% producer accuracy and 69% user accuracy (68% overall accuracy) based on analy-
sis of 104 ground truth testing polygons. The second method, an object-based image analysis
(OBIA) method, considered both spectral and textural information and improved accuracy,
resulting in 76% producer accuracy and 94% user accuracy (81% overall accuracy) for the
same testing areas. We conclude that the OBIA method is useful for detecting coffee fields
grown in the open and use it to estimate the distribution of about 1050 hectares under coffee
agriculture in the Kona region in 2012. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full
attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.11.046005]
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1 Introduction

Coffee is a commodity of major importance for tropical agriculture, with about 8.8 million
tonnes of green beans produced annually from over 10 million hectares under cultivation world-
wide in 2013.1 It is estimated that 125 million people depend on coffee for their livelihoods,2 and
its importance has only grown with increasing popularity of coffee and its role as the leading
commodity of the “fair trade” sociopolitical movement of the last 30 years.3 Despite its central-
ity, coffee production is under threat from a variety of sources, including market price collapses,
pollinator declines, and pests and pathogens.4–6

A remote mapping method would be of value to those studying coffee production and pest
control for Coffea arabica, one of the two major coffee species grown worldwide. Field data
collection and surveying for coffee plantations, while potentially more accurate, is costly and
time consuming. A remote sensing method would allow higher frequency and lower cost
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estimates of areas under coffee cultivation and changes in these areas over time. Spatial analysis
can be useful for management and control of pests as it would allow detection of unmanaged
feral coffee plants, which if ignored could harbor populations and therefore counteract efforts to
control the spread of pests. It would also be of interest to national and international agricultural
planning agencies. Finally, accurate detection and characterization of coffee patches could be an
important component of models of coffee agroecosystems that model the growth and develop-
ment as well as the dynamics of coffee crops.7,8 These models are important because they are
used to develop management options for coffee production.9,10

There have been several studies over the years in tropical regions aimed at classifying coffee
plants using remotely sensed data, with varied classification accuracy results.11,12 High variation
results from cloud cover in tropical regions and from the need for high spatial resolution imagery
to identify individual plants, as well as to distinguish coffee from other vegetation. For example,
Landsat data have been used to classify coffee plants in Costa Rica with a 65% accuracy overall11

and in El Salvador with a 76.7% accuracy overall, although the authors recognized that they had
only a small sample dataset for the accuracy assessment.12 More recently, in Brazil, SPOT
(Satellite for observation of Earth) data analyzed via convolutional neural networks were

Fig. 1 Hawaii Island district map with North and South Kona districts highlighted in thick black line
and coffee region mapped in yellow. Lower right subpanel: Hawaii Island relative to the Hawaiian
archipelago. Upper right subpanel: Hawaiian archipelago relative to the continental United States.
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used to get very good classification accuracy results of 91.8%.13 However, this method may be
difficult to apply to other regions as it requires “careful fine-tuning” of the algorithms and knowl-
edge of neural networks.13

The objective of this study was to identify an efficient methodology using remote sensing and
geospatial technologies for detecting coffee plants (Coffea spp.) and mapping the distribution on
Hawaii Island. The pilot study area is located in the Kona coffee belt in the North and South
Kona Districts of Hawaii Island (Fig. 1). 8-band multispectral visible to near-infrared high spatial
resolution (2 m) WorldView-2 satellite imagery (WV2) was used for this analysis. A maximum
likelihood pixel-based classification algorithm and an algorithm based on object-based image
analysis (OBIA) were tested for this study.

2 Study Area

The Hawaii coffee industry is relatively small but enjoys an excellent reputation. There is coffee
production on Kauai, Oahu, Molokai, Maui, and Hawaii Islands. On Hawaii Island, coffee is
primarily grown in the Kona and Kau districts.14 Kona coffee commands a premium price on the
world specialty market based on its geographic origin and quality.15 The introduction in 2010 of
the coffee berry borer [Hypothenemus hampei (Ferrari)], a major pest of coffee worldwide, has
shaken the industry in Kona, and Hawaii generally, and spurred interest in precision agriculture
to combat the threat.16,17

Kona’s “coffee belt” is a suitable location to test methods of remote-detection of coffee plants
because it is environmentally heterogeneous. A two mile-wide strip of agricultural zone exists at
elevations between 215 and 610 m.18 The coffee belt area mapped includes 514 km2 or ∼51;400
hectares of the North and South Kona Districts with the elevation ranging from sea level to
2438 m (Fig. 1).

3 Materials and Methods

3.1 Overview

Image classification was conducted using a maximum likelihood (pixel-based) and an object-
based algorithm in ENVI 5.2 and 5.3. The goal was to test both classification methods for map-
ping coffee trees growing in this Kona coffee belt region of Hawaii Island from high-resolution
remotely sensed data.

Table 1 DigitalGlobe WorldView-2 satellite spectral resolution specifications. The panchromatic
spectral band has 46 cm spatial resolution, while the multispectral bands have 1.85-m spatial
resolution.

Description Band ID Spectral resolution (nm) Spatial resolution

Coastal blue 1 400 to 450 1.85 m

Blue 2 450 to 510 1.85 m

Green 3 510 to 580 1.85 m

Yellow 4 585 to 625 1.85 m

Red 5 630 to 690 1.85 m

Red-edge 6 705 to 745 1.85 m

NIR1 7 770 to 895 1.85 m

NIR2 8 860 to 1040 1.85 m

Panchromatic band (1) 450 to 800 46 cm
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3.2 Satellite Imagery

WV2 was launched in 2009 by DigitalGlobe Inc. and provides image data with a multispectral
spatial resolution of 1.85 m GSD at nadir and 2.07 GSD at 20 deg off-nadir and panchromatic
spatial resolution of 46 cm GSD at nadir and 0.52 cm GSD at 20 deg off-nadir. This high-
resolution satellite imagery provides eight spectral bands including coastal blue, blue, green,
yellow, red, red edge, NIR 1 (near-infrared), and NIR 2 (Table 1). The satellite operates at an
altitude of 770 km, collecting almost 1 million km2 of imagery per day, and circles the globe in
1.1 days.

The multispectral satellite imagery used in this study was recorded with 8-bit quantization,
with acquisition dates for the study area including December 16 and 22, 2012, for the North and
South Kona Districts of Hawaii Island (Fig. 1). Orthoimagery 2012 WorldView-2 Hawaii Island
Mosaic, Release 2, used in this analysis was provided by USDA-NRCS National Geospatial
Center of Excellence and delivered to the Spatial Data Analysis and Visualization Lab
(SDAV) at the University of Hawaii at Hilo in July 2013. The Pan Sharpen mosaic is a combi-
nation of panchromatic and multispectral bands (bands 2-3-4) that was color balanced by USDA-
NRCS National Geospatial Center of Excellence.

Individual coffee trees span ∼4 ft (∼1.5 m), while coffee fields span several hundred meters.
As a general rule, spatial resolution for digital imagery should be one-half the width of the small-
est tree of interest for analysis.19 Based on this, WV2 satellite imagery (1.85 m resolution/multi-
spectral) may not be optimal for detecting individual coffee plants in an open field of mixed
vegetation, but it is adequate for detecting coffee plantation fields. The panchromatic color bal-
anced imagery provided a higher spatial resolution (46 cm) as an aid in visually cross-checking
the accuracy of multispectral eight-band pixel-based classification for commission and omission
errors.

3.3 Ground Truth and Accuracy Assessment

To calibrate the classification training pixels, evaluate classification results, and confirm accu-
racy and independence of the testing pixels, we collected ground-truth reference data using a
handheld GPS unit (Rino 655, Garmin International, Olathe, Kansas) by physically visiting a
subset of sites. Photographs were collected with GPS data to confirm land use classes and plant
species identification for building robust pixel training classes (Table 2) and independent

Table 2 Supervised vegetation classification training pixels and points used in ENVI representing
land cover classes identified within the North and South Kona Districts of Hawaii island study area.
The majority of OBIA points are one pixel in size (see text for more details).

Land cover class Training pixels (ML) Training points (OBIA)

Coffee 590 64

Macadamia 395 2254

Mixed forest 475 3677

Grass 198 35

Monkeypod 196 75

No vegetation 165 56

Urban 174 225

Roads 173 46

Water — 10

Bare ground — 4

Total 2366 6446
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accuracy assessment polygons/pixels (Table 3). In addition to 2012 WV2 satellite imagery and
GPS ground reference data, we also used high-resolution (15 cm) 2012 Pictometry Online (POL)
aerial imagery to confirm the presence or absence of coffee and to delineate training and testing
pixels and classes. We analyzed GPS and Pictometry data in ArcGIS 10.2 (Esri Corp., Redlands,
California) and ENVI 5.2 (Harris Geospatial Corp., Melbourne, Florida) to assist in developing
training pixels and accuracy testing pixels and to cross-check the coffee classification map
results.

We selected a total of 2366 training pixels covering the geographic extent of the area mapped
(Fig. 1) to train the ENVI software to detect coffee plants using the maximum likelihood veg-
etation classification algorithm. Pixels were selected haphazardly from areas that were visually
uniform in the ground truth data. These same training areas were referenced for the OBIA clas-
sification as well as additional training areas chosen visually to improve the classification. The
training pixels used were derived from 8 land cover classes identified using 2012 WV2 satellite
imagery (1.85-m multispectral/46-cm panchromatic resolution), 2012 POL aerial imagery
(15 cm resolution), and GPS field verification within the study area and included (1) coffee,
(2) macadamia nut, (3) mixed forest, (4) grass, (5) monkeypod, (6) no vegetation, (7) urban,
and (8) roads. For the OBIA analysis, two additional classes were included: (9) water and
(10) bare ground (naked soil, not including lava fields, which were included in “no vegetation”)
(Table 2).

We conducted accuracy assessments of both coffee detection methods using the same set of
pixel/polygon data (a testing set) to quantify the reliability of the classified map results20,21

(Table 3). This testing set was separate from the training set (Table 2) to avoid overestimating
or misrepresenting classification accuracy.22 For accuracy assessments, we delineated in ENVI
104 independent polygons or 18,360 testing pixels (Table 3) representing the same 8 land use
classes used for the maximum likelihood training method. We cross-checked each testing poly-
gon for species/class homogeneity and spatial autocorrelation with maximum likelihood training
pixels to confirm that testing pixels/polygons were independent from training pixels. This in-
dependent validation was done using high-resolution (15 cm) POL aerial imagery with acquis-
ition dates spanning from January 11 through December 29, 2012, with an ArcGIS user interface
developed by Pictometry International Corp. The WV2 imagery acquisition dates for the clas-
sification analysis were December 16 and 22, 2012, for the North and South Kona Districts of
Hawaii Island. We calculated final confusion matrices in ENVI by comparing the independently
verified testing pixels with the final classification results displayed in the results section of this
report (Tables 5, 6).

Table 3 Accuracy assessment testing pixels/polygons used in the confusion matrix analysis in
ENVI. The same polygons/pixels were used for testing both the maximum likelihood and OBIA
classifiers.

Class Polygons Pixels

Coffee 22 4085

Macadamia 21 4578

Mixed forest 15 5066

Grass 15 1881

Monkeypod 16 655

No vegetation 5 1349

Urban 5 372

Roads 5 374

Total 104 18,360
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Table 4 Confusion matrix results for the pixel-based and OBIA coffee classification with producer
and user accuracy (pixel overall accuracy = 68.15%, pixel kappa coefficient = 0.6081, OBIA overall
accuracy = 80.62, and OBIA kappa coefficient = 0.7563). Producer and user accuracy estimates
for each method are given in percentages, values in bold are for coffee.

Map class
Pixel producer

accuracy
Pixel user
accuracy

OBIA producer
accuracy

OBIA user
accuracy

Coffee 71.82 69.39 75.89 94.40

Macadamia 36.39 66.14 92.62 81.84

Mixed forest 75.82 71.78 86.79 88.67

Grass 80.60 76.22 71.03 50.72

Monkeypod 79.24 26.17 72.37 93.86

No veg 98.67 91.48 49.15 74.58

Urban 93.55 77.51 98.39 61.31

Roads 95.99 93.01 60.43 72.67

Table 5 ENVI confusion matrix results for the pixel-based classified image using 104 indepen-
dent testing polygons across the Kona coffee belt study area. The labels in rows represent the
training map classes, and the labels in columns represent the ground truth testing classes. The
cells in between give the producer accuracy in percent assigned to each class, and the numbers in
brackets are the number of pixels assigned to each class. Parentheses highlight testing set pixels
that are correctly classified in the map. The overall accuracy is the diagonal sum of correctly clas-
sified pixels divided by total number of all pixels. User accuracy is in rows, and producer accuracy
data is in columns.

Map
class

Ground truth pixels

Coffee Macnut Forest Grass Mpod No veg Urban Roads
Total
pixels

Coffee 71.8
(2934)

18.5 (845) 7.7 (390) 1.1 (20) 5.8 (38) 0 (0) 0 (0) 0.3 (1) 4228

Macnut 10.1 (413) 36.4
(1666)

5.9 (298) 4.4 (83) 9.0 (59) 0 (0) 0 (0) 0 (0) 2519

Forest 3.4 (138) 24.0 (1099) 75.8
(3841)

12.4 (233) 5.8 (38) 0 (0) 0.3 (1) 0.3 (1) 5351

Grass 7.3 (298) 1.4 (62) 2.0 (103) 80.6
(1516)

0.3 (1) 0.7 (9) 0 (0) 0 (0) 1989

Mpod 5.3 (216) 19.0 (870) 7.0 (352) 1.4 (26) 79.2
(519)

0 (0) 0 (0) 0 (0) 1983

No veg 0.3 (13) 0.5 (22) 1.3 (67) 0.2 (3) 0 (0) 98.7
(1331)

2.7 (10) 2.4 (9) 1455

Urban 1.8 (73) 0.3 (14) 0.2 (9) 0 (0) 0 (0) 0.3 (1) 93.6
(348)

1.1 (4) 449

Roads 0 (0) 0 (0) 0.1 (6) 0 (0) 0 (0) 0.6 (8) 3.5 (13) 96.0
(359)

386

Total
pixels

4085 4578 5066 1881 655 1349 372 374 18,360
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3.4 Details on Classification Methods

We used a maximum likelihood estimation algorithm including all eight spectral bands to clas-
sify coffee by assigning each image pixel to a landcover class.23 Maximum likelihood assigns
pixels to classes following parametrization assuming that the values in each band are normally
distributed, which we verified visually for our training areas using the histogram facility in ENVI
5.2. The maximum likelihood classifier operates on each pixel independently.

By contrast, the OBIA analysis we employed uses a set of pixels to classify imagery based on
both the average spectral information from the set pixels and on geometric features (such as size,
shape, and texture) of objects imaged by the set of pixels. The example based feature extraction
tool in ENVI 5.3, considered a supervised OBIA classification technique in that the user selects
the training objects that are used to classify the image, was used for this study.

Discrete steps in the OBIA process included image segmentation, selecting training data,
selecting attributes for classification, and selecting a classification algorithm. Segmentation
is the process of partitioning an image into objects by grouping neighboring pixels with common
values. For this analysis, the edge detection segmentation algorithm with a scale level of 35.0 and
the full lambda schedule merge algorithm with a level of 95.0 was used based on the red-edge
band and a texture kernel size of 5 to best detect and delineate different vegetation types as
recommended in the ENVI documentation.32 The next step was to select training data, or exam-
ples, for the supervised classification. The software could not load a previously built training
dataset into the FX classification tool; therefore, the same training dataset that was used for the
pixel-based classification could not be used. Instead, new training areas were manually selected
based on the imagery by referencing the previous training dataset. The FX classification tool

Table 6 ENVI confusion matrix results for the OBIA classified image using 104 independent test-
ing polygons across the Kona coffee belt study area. The labels in rows represent the training map
classes, and the labels in columns represent the ground truth testing classes. The cells in between
give the producer accuracy in percent assigned to each class, and the numbers in brackets are the
number of pixels assigned to each class. Parentheses highlight testing set pixels that are correctly
classified in the map. The overall accuracy is the diagonal sum of correctly classified pixels divided
by total number of all pixels. User accuracy is in rows, and producer accuracy data is in columns.

Map
class

Ground truth pixels

Coffee Macnut Forest Grass Mpod No veg Urban Roads Total pixels

Coffee 75.89
(3100)

0 (0) 0 (0) 6.96
(131)

8.09
(53)

0 (0) 0 (0) 0 (0) 3284

Macnut 3.97
(162)

92.62
(4240)

13.21
(669)

2.13
(40)

9.92
(65)

0 (0) 1.34 (5) 0 (0) 5181

Forest 0.76 (31) 5.29
(242)

86.79
(4397)

12.01
(226)

9.62
(63)

0 (0) 0 (0) 0 (0) 4959

Grass 19.07
(779)

0 (0) 0 (0) 71.03
(1336)

0 (0) 38.47
(519)

0 (0) 0 (0) 2634

Mpod 0.32 (13) 0 (0) 0 (0) 0.96
(18)

72.37
(474)

0 (0) 0 (0) 0 (0) 505

No veg 0 (0) 2.10 (96) 0 (0) 6.91
(130)

0 (0) 49.15
(663)

0 (0) 0 (0) 889

Urban 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 6.15 (83) 98.39
(366)

39.57
(148)

597

Roads 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 6.23
(84)

0.27 (1) 60.43
(226)

311

Total pixels 4085 4578 5066 1881 655 1349 372 374 18,360
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allows for manual selection of training areas based on a preanalysis segmentation, which creates
a set of polygons created for the entire image. When the user selects training points, the polygon
around each point is selected by the tool and added to the training set. For this reason, there were
a larger number of pixels used in training the OBIA method compared with the ML method
(Table 2). The OBIA training dataset we used comprised 164 polygons and 6446 points
(6468 pixels; 22 points fell between pixels and were averaged to make points) with an overall
average of 39 points per polygon.

We used the selected areas to train a support vector machine (SVM) model within the OBIA
pipeline. SVM is a supervised classification method derived from statistical learning theory that
often yields good classification results from complex and noisy data. It separates the classes with
a decision surface that maximizes the margin among the classes.22,24,25 The SVM model used in
ENVI uses the pairwise classification strategy for multiclass classification. The kernel-type set-
ting used for this analysis was a third-order polynomial, as described by

EQ-TARGET;temp:intralink-;sec3.4;116;580KðxixjÞ ¼ ðgxTi xj þ rÞd; g > 0;

where g is the gamma term in the kernel function, d is the polynomial degree term in the kernel
function, and r is the bias term in the kernel function. The gamma, bias, and penalty parameters
were hand tuned and set to 0.03, 1, and 100, respectively. The penalty parameter controls the
degree of misclassification in the model.

4 Results and Discussion

Direct comparison of results from the pixel-based and OBIA methods is complicated by the fact
that each could potentially be further tuned, that additional training areas might improve one or
the other, and that applying these in a different parts of the world might lead to different results.
Despite this complexity, the analyses conducted are typical for the tools selected, and the results
for each method are useful for guiding others attempting to classify coffee plantations from
satellite imagery. The accuracy results for coffee were better using the OBIA technique in
ENVI’s feature extraction tool (76% producer accuracy and 94% user accuracy) compared
with the pixel-based maximum likelihood approach (72% producer accuracy and 69% user accu-
racy), as shown in Table 4. Although the pixel-based maximum likelihood supervised classi-
fication algorithm produced reasonable results in terms of coffee classification with overall
accuracy (68%) and kappa coefficient (0.6081) (Tables 4 and 5, respectively), it did not pick
out contiguous areas of coffee very well, as seen in the classification map of the coffee in
the Kona coffee region. The map is difficult to interpret as pixels identified as coffee appear
over the entire landscape (Fig. 2). In contrast, the object-based feature extraction tool in
ENVI provided better results, both in terms of overall accuracy (81%) and kappa coefficient
(0.7563) (Tables 4 and 6, respectively) and because it delivered a map with clear coffee fields.
We also note that the OBIA classifier should be more resistant to shifts in the spectral signature
of coffee plants over space or between years, which has been hypothesized to occur based on
environmental conditions.26

Further examination of Table 4 indicates that the OBIA classifier outperformed the pixel-
based classifier in some of the most abundant cover classes in the study area besides coffee,
including macadamia and mixed forest. However, in some of the less-represented classes
such as roads, the pixel-based classifier was more accurate. This is possibly because the spectral
signature of this class is distinct, favoring spectral-only pixel classifiers compared with the OBIA
method, which also considered less-distinct shape information. This suggests that, while the
OBIA method is superior for detecting coffee, it might be worth eliminating some spectrally
separable classes before application, especially in areas with many roadways, bare ground,
and urban areas.

Some of the inaccuracies found in both classification maps contributing to commission and
omission errors may be due to the lack of a unique spectral signature detected in the target
species coffee from all other species found in this landscape using the 8-band WV2 imagery.
There was an overlap of spectral signatures, or weak spectral separability, found between mac-
adamia nut trees and coffee trees (−0.732), which are also commonly found on the same fields.

Gaertner et al.: Vegetation classification of Coffea on Hawaii Island. . .
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Often macadamia nut trees are used as an over-story crop with shade coffee planted beneath.
There was also weak spectral separability between coffee and mixed forest (−1.270) and coffee
and monkeypod (−1.389). The training dataset for the pixel-based method was tested for spectral
separability in ENVI 5.2, which applies the Jeffries-Matusita, transformed divergence method
for testing.

Some inaccuracy is introduced during the field data collection. As a general rule, the accu-
racy of the GPS unit used for defining training polygons should be appropriate for the resolution
of the imagery and have an accuracy of one-half the size of the pixel. The accuracy of the Garmin
Rino 655 used in this analysis was �3 m, so there may be some error expected using this GPS
unit without differential correction given the high spatial resolution and corresponding pixel size.

Coffee plants are found in various stages of growth on this landscape and can cover a range of
growth habits, including feral coffee, abandoned coffee farms, cut stumps, weak or sparse coffee
fields, mixed crops, and lush well-fertilized coffee fields. This adds a level of complexity to
delineating a specific coffee spectral signature across this region using the classification algo-
rithm alone. Despite these challenges, coffee fields are clearly visible in the classification maps,
especially the one generated via OBIA (Fig. 3).

According to the Baseline Study for Food Self-Sufficiency in Hawaii County, there were
∼1660 hectares of coffee crop under cultivation in Kona in 2012.27 The pixel-based classification

Fig. 2 Maximum likelihood (pixel-based) vegetation classification of the Kona coast in Hawaii.
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approach greatly overestimated (þ60%) the amount of coffee under cultivation compared with
the Baseline Study, with ∼2650 hectares classified as coffee (Fig. 2). The object-based classi-
fication approach more conservatively estimates the amount of coffee under cultivation, yielding
∼1043 hectares classified as coffee (Fig. 3). The difference of about 600 hectares (or 37%) for
the OBIA compared with the Baseline Study can be attributed at least partly to misclassification
because, according to our accuracy results, there was an ∼25% error of omission rate for the
coffee pixels under that method. Omission may be due to misclassification of fields that had
recently been heavily pruned or stumped or not planted in rows—a practice observed in
some of the older farms. In addition, much of the coffee grown in Kona is grown under
shade or in mixed plots (about 890 hectares estimated to be mixed coffee and macadamia
island-wide27). Despite these factors, the object-based classification seems to accurately re-
present the clumped nature of the coffee fields rather than the scattering of coffee pixels across
the pixel-based image. It should be considered a lower estimate of the area under coffee culti-
vation on the island.

For the Kona coffee industry, specifically, the classification map presented here will be a
valuable source of information on the physical characteristics of the areas under production.
The distribution of elevation at which coffee is grown and the average field size can be calculated
quickly based on the classification presented. The locations of coffee fields also can be related to

Fig. 3 Object-based vegetation classification of the Kona coast in Hawaii.
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various ecoclimatic parameters such as solar irradiation, soil types, and rainfall. Finally, the
methods described here can be used to track changes in coffee agriculture in Hawaii via the
classification of other WorldView images, such as WorldView-3 from January 2016.
Specifically, questions on the increase or decrease of the overall area under coffee production
can be assessed, and, in the longer-term, changes in elevation of coffee production following
changes in climate could also be tested. Information from these will be especially important for
grower groups and planners as the industry continues to respond to the invasion of the coffee
berry borer and to prepare for future pests and changing climate.

Future research should pursue the generality of our application of the OBIA method used
here for coffee detection. This will be especially interesting in areas where coffee rust (Hemileia
vastatrix) is present (currently most of the coffee growing regions of the world), as this might
affect the spectral signature of the plant.28,29 In addition, it would be useful to apply this method
to estimating changes in areas under coffee production over time by comparing classification
results from images acquired in different years.

An online map viewer for quick viewing of the classifier outputs is available in Ref. 30.
Within this online viewer, the maximum likelihood layer is labeled “Max Like WV2 Kona
Coast” and the OBIA results are labeled “FX WV2 Kona Coast.”

5 Conclusion

Coffee is an economically important crop in the tropics, so a remote mapping method is of value
to those measuring coffee production and planning pest control since such a method could be
executed at lower cost and more quickly than field data collection. In this study, we used a pixel-
based classification method, maximum likelihood, and an OBIA classification method for
detecting coffee from WorldView 2 satellite imagery of the Kona coffee growing region in
Hawaii. Compared with the spectral-only pixel-based method, the OBIA approach was superior
for detecting coffee fields, with an overall accuracy of 81% compared with 68% for the pixel
classifier. In addition, OBIA was better at producing contiguous classifiers without requiring
additional processing to generate polygons of expected coffee fields as the pixel-based method
would require. The estimates from the OBIA classifier of area under coffee cultivation in Kona
were lower than those from other surveys done through field work or tax records, attributable to
misclassification, changes over time between the surveys compared, and understory coffee,
which would not be detectable in the satellite imagery.
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