Light harvesting using photonic crystal (PhC) surface patterns provides an opportunity to surpass the ray-optics defined light trapping and to approach thermodynamic ShockleyQueisser limit of solar cell efficiency, which for a single junction Si solar cell is ~ 32%. For an industry amenable nano-patterning of Si solar cells, we used laser direct write and stepper lithography based approaches for defining a large area (1 cm2) light trapping PhC patterns on silicon. Nanoholes of ~ 500 nm in diameter were fabricated by direct laser writing in a thin layer of chromium to act as a mask for subsequent reactive plasma etching to fabricate the nanostructures forming a PhC surface over a square centimeter. Surface area fabrication throughput was improved by more than order of magnitude as compared with electron beam lithography required to achieve sub-1 μm resolution.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.