We propose a stop-band filter in infrared region using a periodically chirped subwavelength structure. The structure is made of a stack of metal and dielectric pattern made on a thick metal layer that is deposited a PMMA substrate. It is found that an appropriately designed microstructure of metal-insulator-metal patches can generate a wideband infrared absorption, resulting in an infrared stop-band filter. Different width of metal-insulator-metal resonator arranged in one unit cell generate trough in the reflection spectrum at different wavelengths. The full width at half magnitude (FWHM) of the stop-band filter can thus be adjusted by tuning the width of the resonators. The larger the range of the resonator width, the wider the bandwidth will be. Under the condition of subwavelength dimension of the structure compared with the working wavelength, it is found that a FWHM of 4μm at central wavelength of ~9μm and a high absorption efficiency of up to 80% can be achieved. The proposed structure provides a novel method in the design of wideband efficient plasmonic absorbers in infrared or THz spectral regions with simultaneously wide bandwidth and high efficiency of absorption.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.