Proceedings Article | 29 March 2016
Proc. SPIE. 9783, Medical Imaging 2016: Physics of Medical Imaging
KEYWORDS: Breast, Statistical analysis, X-ray computed tomography, Breast cancer, CT reconstruction, Visualization, Imaging systems, Image segmentation, Computed tomography, 3D image processing, Volume segmentation, Breast imaging
Anthropomorphic software breast phantoms have been utilized for preclinical quantitative validation of breast imaging
systems. Efficacy of the simulation-based validation depends on the realism of phantom images. Anatomical
measurements of the breast tissue, such as the size and distribution of adipose compartments or the thickness of Cooper’s
ligaments, are essential for the realistic simulation of breast anatomy. Such measurements are, however, not readily
available in the literature. In this study, we assessed the statistics of adipose compartments as visualized in CT images of
a total mastectomy specimen. The specimen was preserved in formalin, and imaged using a standard body CT protocol
and high X-ray dose. A human operator manually segmented adipose compartments in reconstructed CT images using
ITK-SNAP software, and calculated the volume of each compartment. In addition, the time needed for the manual
segmentation and the operator’s confidence were recorded. The average volume, standard deviation, and the probability
distribution of compartment volumes were estimated from 205 segmented adipose compartments. We also estimated the
potential correlation between the segmentation time, operator’s confidence, and compartment volume. The statistical
tests indicated that the estimated compartment volumes do not follow the normal distribution. The compartment volumes
are found to be correlated with the segmentation time; no significant correlation between the volume and the operator
confidence. The performed study is limited by the mastectomy specimen position. The analysis of compartment volumes
will better inform development of more realistic breast anatomy simulation.