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Chapter 1

Introduction
The speckle phenomenon is ubiquitous in many fields of science and technology.
Speckle phenomena can be seen in many different coherent imaging modalities,
including acoustical imaging (e.g., medical ultrasound) and microwave imaging (e.g.,
synthetic-aperture radar imaging). This book focuses on simulating optical speckle
with Python, but the same methods used can in many cases be applied to other
software packages.

This book is a revised version of the previously published book entitled Simulating
Speckle with Mathematica® (Ref. [1]). The reader may wonder why Python has been
chosen as the software package for this new book. There are several reasons for this
choice. First, and most important, Python is easily available for download from the
web and, unlike Mathematica, does not require a paid license. Second, many
students in the sciences and engineering use Python as their software package of
choice. The one disadvantage of Python when compared with Mathematica is that
basic Python does not include all of the scientific functions one typically needs, but
additional add-on libraries are available and can be incorporated in Python with
appropriate instructions in the Python program. This book has been written entirely
in Python using the integrated development environment (IDE) Jupyter Notebook,
again, available from the web without a paid license. The Python files for all
chapters can be found at the following URL:
https://spie.org/Samples/Pressbook_Supplemental/PM369_sup.zip. This book is
meant as a companion to the book Speckle Phenomena in Optics: Theory and
Applications, 2nd Edition, published by SPIE Press (Ref. [2]). An extensive list of
references can be found in that book.

1.1 Brief Python Background

We do not attempt to teach the reader how to code in Python here. For novices, an
excellent book is Ref. [3], while for more advanced scientific programming, Ref. [4] is
very helpful. Python version 3 and Jupyter Notebook 6.1.4 have been used here and
are recommended to the reader. The Python environment consists of the basic
Python core plus a multitude of add-on libraries. The primary libraries needed for
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our computations are numPy, sciPy, mpmath, and pyplot from matplotlib, which
can be loaded and given abbreviations with the commands below:

Note the abbreviations np, plt, mp, and sci. Often we may import a library such as
numPy multiple times in a single chapter so that portions of the code can be run
without running the code for the entire chapter. To illustrate the method for calling
a specific function, consider calculating the square root of 2 using numPy:

1.4142135623730951

To execute a cell of code, you must press shift-return. To see all of the available
commands in numPy, run the code dir(np).

In Python, parentheses ( ) are used to enclose the arguments of functions, to group
mathematics, and to define tuples, which are immutable lists. Square brackets [ ] are
used to enclose lists and to enclose index numbers of elements in lists. Double
quotes  or single quotes  are used to define strings. Also useful to note at
the start, comments in the code begin with a symbol #, and line breaks in the code
are introduced by the symbol .

From the coding examples presented in this book, the reader may gain a sufficient
understanding of Python to at least get started. The author is not an expert in
Python programming, but has gained enough knowledge to carry out the examples
in this book. A Python expert might use simpler and/or more sophisticated coding
than presented here. However, such coding may be more difficult to understand
than the simpler coding used here.

1.2 Speckle Background

In optics, speckle arises when light is reflected from a rough surface or is
transmitted through a diffuser that jumbles the phase at each object point by an
unpredictable amount. The contributions from various scattering regions on the
object then generate a multitude of complex wavelets that interfere to produce
speckle. When the reflected or transmitted light propagates to an observation plane
some distance away, complicated fluctuations of amplitude, phase, and intensity
occur in that plane due to random interference. These fluctuations are what we refer

In [2]: import numpy as np
import scipy as sci
import mpmath as mp
from matplotlib import pyplot as plt

In [3]: np.sqrt(2)

Out[3]:

"" '  '

∖
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to as speckle. If the phase perturbations introduced by the object equal or exceed
2π radians, we say that the speckle is fully developed. If, on the other hand, the
phase fluctuations introduced by the object are less than 2π radians, the resulting
speckle is called partially developed. In some cases, one scattered wavelet may be
much larger than the others, in which case the speckle is neither fully developed nor
partially developed, but rather requires a special development to understand the
statistics of the observed light amplitude or intensity.

It is important to remember that when we speak of the statistics of speckle, we are
speaking of fluctuations over an ensemble of macroscopically similar but
microscopically different rough surfaces or diffusers. The resulting perturbed
wavefront is unchanging for any one surface or diffuser, but changes as different
rough surfaces or different diffusers are introduced. Since we do not know the fine-
scale structure of the surface fluctuations, the best we can do is specify statistics
over an ensemble of possible surfaces. To experimentally discover statistical
properties of the speckle, either many microscopically different reflecting or
transmitting structures must be introduced sequentially, or, in the case of speckle
that is spatially ergodic (i.e., statistically similar over a wide region of the speckle
pattern), spatial averages should yield the same results as an ensemble average.

Note that the theoretical results for the probability density functions of amplitude
or intensity, as found in Ref. [2], are based on the assumption of an infinite number
of random phasor contributions. Obviously, we can not simulate an infinite number
of random phasors on the computer, but we can choose a large finite number. Our
results, then, will yield information on how well the theoretical predictions of the
statistics of amplitude and intensity match the results based on a large but finite
number of phasors.

1.3 Methods for Simulating Speckle

In Chapters 2 and 3, we simulate the first-order statistics (i.e., the speckle at a single
point in space or time) by summing a large number of complex phasors.
Assumptions are made in various sections about the statistics of the phase of the
phasors or about the number of phasors. Histograms of the various results are
computed and compared with the theoretical results valid for an infinite number of
phasors. The ideas behind these simulations are quite straightforward. We simply
sum a finite number of complex phasors and examine the statistics of amplitude
(Chapter 2) or intensity (Chapter 3) by calculating histograms of the results from a
large number of independent trials.

Introduction 3



Chapter 2

First-Order Statistics of Speckle
Amplitude
By first-order statistics of speckle we mean the statistics observed at a point in
space or a point in time, with the statistics being over an ensemble of rough
surfaces or rough diffusers. First we consider the statistics of speckle complex
amplitude, relevant when using ultrasound or microwave illumination of surfaces
that are rough on the scale of their individual wavelengths. For such imaging
modalities, it is possible to measure both the magnitude and the phase of the
wavefields. In Chapter 3, we turn to the statistics of speckle intensity, which is the
most relevant quantity for the optical region of the spectrum, where a detector can
measure only intensity.

2.1 Speckle as the Sum of Many Independent
Random Phasors
The statistics of speckle at a point are the same as the statistics of a sum of complex
phasors with independent amplitudes and phases. Let the symbol  represent the

 element in an array of  different complex phasors of the following form:

(2-1) 

where  is a non-negative amplitude and  is a phase. Each phasor represents an
independent contribution to the complex value of the speckle field at a point in
space or time. We assume that  and  are random variables drawn from a
statistical ensemble, and that they are statistically independent of each other and
statistically independent of all other random variables occurring in the array of
phasors. We then form the normalized sum,

(2-2)

ck

kth N

ck = ak exp(jϕk), k = 1, . . . ,N ,

ak ϕk

ak ϕk

S = ∑N
k=1 ck = ∑N

k=1 ak exp(jϕk)1

√N

1

√N

  = ak cosϕk + j ∑N
k=1 ak sinϕk,1

√N

1

√N
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Chapter 3

First-Order Statistics of Speckle
Intensity
In the optical region of the spectrum, detectors are unable to follow the ultra-fast
cycles of the optical field amplitude, but rather, they respond to incident power or
intensity, averaged over some response time of the detector and some finite area of
the detector element. For that reason, in studying speckle in the optical region of
the spectrum, the intensity statistics of random phasor sums are of much greater
interest than amplitude statistics. We now turn our attention to simulating the
intensity statistics of random phasor sums. The Python code used in the previous
chapter for various amplitude cases can be reused with small changes. Instead of
calculating the length of the random phasor sums, we must calculate the squared
length of those sums, for the squared length corresponds to intensity. Accordingly,
we modify the previous code to calculate intensity statistics. We will compare the
analytical results with histograms in the various cases we consider.

3.1 Intensity Statistics of the Sum of Many
Random Phasors with Unit Lengths and
Random Phases
The first case considered will be one for which the lengths of all phasors in the sum
are unity (aside from the  normalization) and the individual phases are
uniformly distributed on the interval (−𝜋,𝜋). The appropriate sections of Ref. [2] for
this case are 3.1 and 3.2. Our goal is to calculate discrete approximations to the
probability density functions of the real part, the imaginary part, and the squared
magnitude of . Note that the squared magnitude of  is the same as the squared
length of the resultant phasor, and corresponds to optical intensity. In this section
we consider only a large number of phasors .

Two parameters need to be chosen at the start: the first is , the number of
independent phasors in the sum defining ; the second is , which is the number
of times the simulation is run with independent phases for the individual phasors
contributing to the sum. This multitude of runs collects the statistical data we
desire. The value  is used in this case. If you wish to obtain more-

1/√N

S S

(N ≥ 10)

N

S M

M = 100, 000
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Chapter 4

Simulation of Speckle in Optical
Imaging
In this chapter we examine methods for simulating speckle as it occurs in optical
imaging. Unlike the 1D examples in previous chapters, the simulations in this
chapter will be two-dimensional, since images are 2D entities. Discrete models must
be used in the simulations. Thus, the field complex amplitudes must be represented
by discrete arrays, and therefore sampling is inherent in the simulation. An
important question concerns the sampling density that must be used in the various
cases, with the density chosen high enough to avoid aliasing. According to the
sampling theorem, the required density depends on the bandwidth of the complex
amplitude representation of the light leaving the rough surface or diffuser.

In our previous 1D simulations of speckle, we have used independent diffuser phase
samples, i.e., samples with no local correlations. A Fourier transform of a diffuser
model with no phase correlations exhibits no bandwidth limitation and therefore
results in aliasing. The aliasing is not always harmful. Aliasing of the circular complex
Gaussian field samples results in another circularly symmetric complex Gaussian
field, so the statistics of the field are not changed. Nonetheless, in some applications,
particularly when a diffuser is sandwiched with an object that has its own structure, it
is useful or even necessary to minimize the aliasing by introducing correlations
between the diffuser phase samples, thereby reducing the diffuser bandwidth.
Accordingly, we will introduce correlations between adjacent phase samples, which
will reduce the bandwidth of the diffuser. The farther the correlations extend in the
discrete diffuser phase array the smaller the resulting bandwidth of that diffuser.

It should be noted that even creating a completely bandlimited phase array (i.e.,
one with a sharp cutoff in spatial frequency space) will not create a perfectly
bandlimited wave generated by the diffuser. This is because a perfectly bandlimited
phase  does not generate a perfectly bandlimited  unless  . The
nonlinearity of the complex exponential function generates frequency components
that were not present in the phase sequence. However, bandlimiting the phase
sequence does narrow the spectrum of the complex exponential, as we shall see.
Note also that bandlimiting the complex exponential function (rather than the

ϕ exp(jϕ) ϕ ≪ 2π
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The image of the diffuser is now a field of speckle with uniform statistics
appropriate for fully developed speckle.

4.3 The Autocorrelation Function of Speckle
Intensity
We turn now to a calculation of the autocorrelation of the speckle intensity, or more
correctly stated, the autocovariance, since we will eventually subtract estimates of
the mean intensity. The result will also be normalized to unity at the origin, thus
yielding the normalized autocovariance of intensity. For circular complex Gaussian
field statistics, the correlation function of intensity is given by

(4-1) ,

where  is the average intensity across the image plane and  is the normalized
autocovariance function of the complex field, given by the van Cittert Zernike
theorem as a normalized Fourier transform of the intensity distribution  across the
focal-plane aperture,

(4-2) .

Here, the integration is over the entire  focal-plane coordinates,  is the focal
length of the lens, and  is the wavelength. The coordinates in the image
autocovariance plane are the difference coordinates

, while  are coordinates in the image plane.
For the ideal continuous case and a circular focal-plane aperture stop of diameter

, we have (see Ref. [2], Eq. (5-20))

(4-3) .

In the case of interest here, the intensity transmitted by the focal-plane stop is
limited by a circle of diameter  but contains speckle, as seen in the density plot
below, which is limited to a  subarray of the focal-plane array.

ΓI(Δx, Δy) =
¯̄̄
I

2
(1 + |μ(Δx, Δy)|

2
)

¯̄̄
I μ

−

Ip

μ(Δx, Δy) =
∫ ∫ Ip(α,β) exp(−j (Δxα+Δyβ) dα dβ2π

λf

∫ ∫ Ip(α,β) dα dβ

(α,β) f

λ

(Δx = x1 − x2, Δy = y1 − y2) (x, y)

D

μ(Δx, Δy) = 2
J1(π √Δx2+Δy2)D

λf

π √Δx2+Δy2D

λf

D

256 × 256

In [9]: # Create a density image of the intensity transmitted by the
# focal-plane stop.
from matplotlib import pyplot as plt
import numpy as np
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Our goal here is to perform a calculation that will yield a discrete approximation to
the intensity covariance function in the presence of speckle. The code below
performs this calculation, with the simplification that we assume that .
According to Eq. (4.2) above, we can Fourier transform the intensity passed by the
focal-plane stop and, after normalizing the result by the sum of those intensities, we
obtain the field autocovariance .

# Set the plotting parameters.
x = np.linspace(-1,1,256)
y = np.linspace(-1,1,256)
X, Y = np.meshgrid(x,y)

# Calculate the transmitted intensity in a subarray.
ip = abs(transmitted_field[896:1152,896:1152])**2
Z = ip/np.max(ip)

# Create a density plot of the intensity subarray.
plt.rcParams["figure.figsize"] = [5,5]
plt.title('Density plot of focal-plane aperture')
plt.axis('off')
plt.imshow(Z,vmin = 0,vmax = 0.2,cmap = 'gray', interpolation = 'nearest')

plt.show()

λf = 1

μ
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In both images above, we have chosen the grayscale extent (through the choice of
vmax) to optimize our view of the bar-triplets in the resolution chart. On the left is
the image when no diffuser is present and on the right is the image obtained with a
diffuser. When no diffuser is present, we can resolve most of the bar-triplets in the
group with label "0." However, when the diffuser is present, we cannot resolve any of
the bar-triplets in that group. Thus, the presence of speckle has certainly reduced our
ability to resolve small structures for this object and this choice of a stop diameter.

White Structure on an Opaque Background

We now consider the reverse case in which the structure to be resolved is white and
the background is black. Is there a difference between the effects of speckle just
shown and the effects of speckle in this case? First we define the new object to be
imaged.

In [29]: # Define the inverted image and display a small version of it.
newim3 = ImageOps.invert(newim1)
thumbimage3 =  newim3.resize((300,300));thumbimage3
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We again calculate an image with no diffuser present.

Now we include the diffuser in the object plane.

Out[29]:

In [30]: # Pass the field incident on the focal plane through the aperture with
# no diffuser present.
incidentfield3 = sfft.fftshift(sfft.fft2(newim3))
transmittedfield3 = incidentfield3 * stop

# Fourier transform the field transmitted through the focal plane
# to reach the image plane.
imagefield3 = sfft.ifft2(transmittedfield3)

# Calculate the image intensity.
imageintensity3 = np.abs(imagefield3)**2

# Convert the np.array to "image" format.
normalizedimage3 = (imageintensity3/np.max(imageintensity3))*255
img3 = Image.fromarray(normalizedimage3.astype(np.uint8))

In [31]: # Pass the field incident on the focal plane through the
# focal-plane aperture.
# Include the diffuser.
incidentfield4 = sfft.fftshift(sfft.fft2(newim3*diffuser))
transmittedfield4 = incidentfield4 * stop

# Fourier transform the field transmitted through the focal plane
# to reach the image plane.
imagefield4 = sfft.ifft2(transmittedfield4)
imageintensity4 = np.abs(imagefield4)**2

# Convert the image to "image" format.
normalizedimage4 = (imageintensity4/np.max(imageintensity4))*255
img4 = Image.fromarray(normalizedimage4.astype(np.uint8))
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We plot the two images side-by-side, on the left with no diffuser present and on the
right with a diffuser present.

When no diffuser is present, we can resolve the top two sets of vertical and
horizontal bars in group "0." When the diffuser is present, it is very difficult to
resolve those same sets of bars. However, if we compare the transparent-
background object with the opaque-background object, resolution is worse in the
transparent-background case. There is some advantage to having a transparent
structure on an opaque background, rather than the reverse case.

In [32]: # Set the plotting parameters.
from matplotlib import pyplot as plt
from PIL import Image
plt.rcParams["figure.figsize"] = [10.0, 10.0]
plt.subplots(1,2)
plt.subplots_adjust(wspace = 0.3,hspace = 0.1)

# Plot the two images side-by-side. We set the parameters vmax in 
# both images to yield the best results.
plt.subplot(1,2,1)
plt.axis("off")
plt.title('No diffuser')
plt.imshow(img3,vmin = 0,vmax = 20,cmap = 'binary_r')

plt.subplot(1,2,2)
plt.axis("off")
plt.title('With a diffuser')
plt.imshow(img4,vmin = 0,vmax = 10,cmap = 'binary_r')

plt.show()
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Clipping input data to the valid range for imshow with RGB data ([0..1] for 
floats or [0..255] for integers).

The warning message arises because we have exceeded the range  in the
image color array components in order to make the speckled image brighter and
more visible. The multiplication factor 50 brings the speckled image into an
appropriate range for imshow( ).

A close examination of the colored specked image reveals some interesting facts.
First, the red speckle lobes do seem to be slightly wider than the green or blue
speckle lobes, as they should be. Second, because the wavelength separations are
wide enough to generate independent speckle patterns in the three colors, one can

# Merge the arrays into a color image.
color_array = np.dstack((Rimageintensity, Gimageintensity, \
                         Bimageintensity));

In [81]: # Set the plotting parameters.
plt.rcParams["figure.figsize"] = [10.0, 10.0]
plt.subplots(1,2)
plt.subplots_adjust(wspace = 0.1,hspace = 0.1)

# Plot the two images side-by-side.
plt.subplot(1,2,1)
plt.axis("off")
plt.title('Original Image')
plt.imshow(RGBcolor/np.max(RGBcolor))

plt.subplot(1,2,2)
plt.axis("off")
plt.title('Speckled Image')
plt.imshow(50*color_array/np.max(color_array))

plt.show()

(0, 1)
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distinguish what mixtures of colors were used for various regions of the original
object. For example, in the yellow portion of the upper left of the speckled image,
we see a mixture of mostly red and green speckle, with overlapping speckles of red
and green producing yellow speckle. In the white region, we see speckles of all
colors. The magenta squares in the upper right have a mixture of red and blue
speckles. It's also interesting that in all of the squares, the RGB speckles overlap
enough to maintain a rendering of the original colors.
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Chapter 5

Simulation of Speckle in Free-Space
Propagation
Calculating the diffraction patterns of clear apertures of various shapes is a
common task. However, similar calculations for apertures with a complex internal
structure are less common. In the case studied here, the internal structure of a
rectangular aperture is a random pattern of phase representing a diffuser. To
perform the simulation of propagation, choices must be made for the number of
samples within the aperture (the parameter  in what follows) and the total
number of samples in the simulation (the parameter  in what follows), as well as
the method of calculation. Guidelines for selecting these parameters and methods
for clear apertures do not apply in this more complex case.

The geometry assumed for these simulations is shown in the figure below.

A normally incident plane wave from a highly coherent source, indicated by the
arrows on the left, is incident on a diffuser, and light is scattered in many directions.

M

N

In [1]: # Import library.
from IPython.display import Image

# Load image from local storage.
Image(filename = "freespace.png", width = 400, height = 100)

Out[1]:
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Chapter 6

Speckle at Low Light Levels
In this chapter we explore the properties of speckle when detected at low light
levels. The model used is semiclassical, based on the assumption that light of
uniform intensity  incident on a detector pixel results in a Poisson distribution of
photoelectrons with an average number of photoevents proportional to the integral
of . Thus, if  represents the number of photoevents occurring from the
detector pixel centered at coordinates , the mean number of such
photoevents is given by

(6-1) ,

where  is the quantum efficiency of the detector,  is Planck’s constant,  is the
optical frequency, and  is the area of the photodetector pixel. The multiplier of the
above integral represents the efficiency with which integrated intensity is converted
into numbers of photoevents (see Ref. [2], Section 8.2 for a more detailed discussion
of this subject). Thus, in simulations, an array of intensity values incident on an array
of detector pixels generates an array of integer numbers representing photocounts.
If the intensity varies from detector element to detector element, as it does when
the incident light comprises a speckle pattern, the counts will have varying means at
each detector element. The number of elements in the intensity array in general will
be greater than the number of elements in the photodetector array, since detector
pixels may integrate over several speckles. If the intensity across a given detector
element is constant, the statistics of the number of photoevents will obey a Poisson
distribution. On the other hand, if the intensity across a given detector element is
not constant, as could be the case for an incident speckle pattern, the photoevent
statistics are modified, as described below.

To illustrate the generation of Poisson-distributed counts from a detector array, for
simplicity, we start with a uniform intensity over all elements of the array (i.e., no
speckle present) and generate independent Poisson photocounts with identical
means at all elements of the array. To do so requires partitioning the incident
intensity array of  pixels into  super-pixels, each representing
one detector element. Within one super-pixel there are  samples of the

I

I n(x, y)

(x, y)

¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄
n(x, y) = ∫ ∫A I(x, y) dxdy

η

hν

η h ν

A

N × N N/Q × N/Q

Q × Q
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This is the speckle intensity pattern for which we will study the properties of the
phase in the vicinity of the zeros of intensity.

7.2 Finding the Zeros of Intensity
When the real and imaginary parts of the complex amplitude are simultaneously
zero, the intensity is zero. Below we generate two contours, one (red) where the real
part of the complex amplitude is zero or close to zero, and one (yellow) where the
imaginary part is zero or close to zero.

In [11]: # Plot in the same figure the Fourier intensity and the zero contours
# of the real and imaginary parts of the Fourier amplitudes.

fig, ax = plt.subplots()

# Set the figure size.
plt.rcParams["figure.figsize"] = [6.0, 6.0]
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# Show the speckle intensity.
im = ax.imshow(Fourierintensity,vmin = 0,vmax = 250,cmap = 'gray')

# Contours are defined when the absolute value of the real and imaginary 
# parts are within 0.03 of zero.
contourR = ax.contour(abs(ZR),levels = [.04],cmap = 'autumn',
  linewidths = 2)
contourI = ax.contour(abs(ZI),levels = [.04],cmap = 'Wistia',
  linewidths = 2)

plt.axis('off')
plt.title('Contours of zero for real (red) and imaginary (yellow) parts')

# Include a legend in the plot.
legend_elements = [
    plt.Line2D([0], [0], color = 'red', lw = 2, label = 'Real part zero'),
    plt.Line2D([0], [0], color = 'yellow', lw = 2, 

  label = 'Imaginary part zero')]
ax.legend(handles = legend_elements, loc = 'upper right')

plt.show()
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When the real and imaginary parts are simultaneously zero, the intensity is zero.
Thus, the points where the red and yellow contours cross are zeros of the intensity.

7.3 The Phase Behavior in the Vicinity of the
Zeros of Intensity
To explore the speckle phase in regions close to the zeros of intensity, we create a
contour plot of the phase for eight discrete values of phase between –3π/4 and π.
The quantity mylevels is a list containing the eight values of phase for which we
desire contours. In order to interpret the contour plot, we superimpose that plot
and the contours of zero of the real and imaginary parts so that we can easily
identify where the zeros of intensity occur.

Now we generate a shaded contour plot of the phase, also superimposing a plot of
the contours of the zero real and zero imaginary parts. Calculating the phase
contours takes some time, so be patient.

In [12]: # Extract the phase of the Fourier amplitude. The phase values lie
# between -π and π.
phase = np.angle(Fourieramplitude)

In [13]: import numpy as np
import matplotlib.pyplot as plt

# Prepare to calculate and superimpose the images.
fig, ax = plt.subplots()

# Define the levels of phase for which we want contours.
mylevels = [-np.pi,-3*np.pi/4,-2*np.pi/4,-np.pi/4,0,np.pi/4,2*np.pi/4,
  3*np.pi/4,np.pi]

x = np.linspace(0,N,N)
y = np.linspace(0,N,N)
X, Y = np.meshgrid(x,y)
Z = phase

# Calculate the contour map of the phase.
cax = plt.contourf(X,Y,Z,levels = mylevels,vmin = -np.pi,vmax = np.pi,
  cmap = 'binary')

# Again, calculate the contours of the zeros of the real and imaginary
# parts of the amplitude.
ax.contour(abs(ZR),levels = [.03],cmap = 'autumn',linewidths = 2)
ax.contour(abs(ZI),levels = [.03],cmap = 'Wistia',linewidths = 2)

plt.axis('off')
plt.title('Phase contour plot')
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Chapter 8

Polarization Speckle
The discussions of speckle in the previous chapters have implicitly assumed that the
light in the speckle pattern is perfectly polarized. In many practical applications,
especially when multiple scattering is present, the light scattered by a rough object
or a diffuser may be partially or totally depolarized. In fact, just as the intensity of
the light varies across the speckle pattern, so too the state of polarization may vary.
This random fluctuation of polarization has become known as polarization speckle.
For a more detailed discussion of this topic, see Ref. [5].

8.1 The Polarization Ellipse and the Degree of
Polarization
A useful description of the state of polarization is the polarization ellipse, which is a
graphical representation of the path followed by the tip of the electric vector
through one oscillation cycle. The ellipse is characterized by the parameter 
representing the major semi-axis,  representing the minor semi-axis, and 
representing the angle of the major axis with respect to the  axis. See the example
figure below and the code that generates it. In this case, , , and

.

a

b ψ

x

ψ = π/6 a = 0.8

b = 0.4

In [1]: import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse

# Create a figure and axes.
fig, ax = plt.subplots()

# Set the figure size.
plt.rcParams["figure.figsize"] = [8.0, 8.0]

# Create an ellipse.
ellipse = Ellipse(xy = (0.5, 0.5), width = 0.8, height = 0.4, angle = 30, 
  fill = False)

# Define the x and y coordinates of the major axis of the ellipse.
x1 = [0.16, 0.84]
y1 = [0.3,0.7]

# Define the x and y coordinates of the minor axis of the ellipse.
x2 = [0.6,0.38]
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Chapter 9

Speckle Simulation for Metrology
In most imaging applications, speckle is a nuisance, and various methods are used
to attempt to suppress it. However, in the field of metrology, speckle can be a friend
rather than a foe, and many methods for using speckle in measurement have been
devised. Here we will simulate only a few of such methods; the interested reader is
referred to Ref. [2], (Chapter 9) for a more comprehensive discussion of this topic,
together with references to the pertinent original publications.

9.1 Measurement of In-Plane
Displacement
An early application of speckle to metrology was for measurement of lateral in-
plane displacement. Assume that we are imaging a finite region on a rough object
and we observe speckle in the image. The object then moves laterally, and we wish
to use a second exposure to determine the amount of lateral movement. As the
object translates, the speckle in its image translates as well, but with some change
as new scatterers move into the fixed illuminated region and previous scatterers
move out of the illuminated region. In this simulation, the diffuser represents a
rough surface, the translation of which we aim to measure.

We assume that the optical imaging system is a  system of the same type we
have used in other chapters. The rough object lies in the front focal plane of a
positive lens with focal length . In the rear focal plane of that lens there is an
aperture, centered on the optical axis, that restricts the area through which light can
pass. At one further focal length, a second positive lens, again with focal length ,
captures the light passed by the aperture and passes it on to its rear focal plane
where a filtered image of the rough surface is found.

First, we generate a diffuser representing the rough object that will be laterally
translated. Again, we smooth the diffuser phase so that it has a finite phase
correlation length. Next, we define a finite window corresponding to the finite
illumination spot on the diffuser. This window remains fixed while the diffuser
moves under it. The number of pixels in the simulation is ,  represents the

4f

f

f

N × N P
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Appendix A

Some Subtleties in Simulation With the
4f Imaging System

A.1 Effects on the Speckle Contrast
As pointed out in Section 1.3, there are some subtleties associated with the
generation of simulated speckle using the  imaging system that arise from the
finite size of the arrays used in the simulation. The phenomenon involves a
complicated relationship between the size of the arrays used and the diameter of
the focal-plane stop. It is possible to choose these parameters in such a way that
the contrast of the speckle (i.e., the standard deviation of intensity normalized by
the mean intensity) never achieves its ideal value of unity.

Two effects can be identified. To understand these effects, it is helpful to consider
how much of the diffuser contributes to the value of intensity at any single point in
the image plane. With a finite focal-plane aperture diameter, there is a weighting
function on the diffuser that averages over a finite region, adding complex-valued
sample points that contribute to the image amplitude and intensity at a point. The
smaller the focal-plane aperture the broader that weighting function on the diffuser
becomes; and the larger the diameter of the aperture the narrower that weighting
function becomes.

The sum of the complex phasors within that averaging region generates a new
complex phasor having a length and phase determined by interference between the
complex diffuser pixels lying within the averaging region. If the focal-plane aperture
is one pixel in diameter, a single spectral sample passes the focal plane, and the
intensity in the image plane is constant, with contrast equal to zero for any single
diffuser. If the focal-plane aperture has a diameter  or larger (this circle size
covers the corners of the rectangular sample array), the extent of the weighting
function on the diffuser will be one pixel, covering only one phase cell of the
diffuser. The result is a pure phase image with contrast zero.

Thus, we see that in the limits of small or large focal-plane apertures, the speckle
contrast in the image can be reduced, either due to the small number of phasors
contributing to image intensity at an image point in the former case, or due to

4f

√2N

149



Appendix B

Illustration of How to Group Pixels into
Super-pixels
This appendix explains how to group pixels in a given 2D array into super-pixels,
each containing multiple pixels, while maintaining the proper ordering of pixels.
Creating super-pixels should group adjacent pixels in both the horizontal and
vertical dimensions. If we grouped pixels in super-pixels only along the  axis row-
by-row, this would be analogous to having a detector with elements that are long
horizontally and thin vertically. Our goal is to properly group the pixels for square
detector elements.

B.1 A Simple Example
To make the demonstration as clear as possible, we use small arrays for illustration.
We start with an  array and reduce it to a  array of super-pixels, each
containing  elements.

x

8 × 8 2 × 2

4 × 4

In [1]: import numpy as np

# Size of original array is N x N.
N = 8

# Size of a super-pixel is 4 x 4.
Q = 4

lineararray = np.zeros(N**2)
squarearray = np.zeros([N,N])

# Create a flattened NumPy array with the original values.
lineararray = np.arange(N**2)
squarearray = lineararray.reshape(N,N)

# Show the square array.
squarearray
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