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1 Background

Vibrational spectroscopy is a method of probing sample molecular vibrations by
subjecting them to light irradiation. Most biomolecules present a unique set of
vibrations, which consequently produce an identifiable spectroscopic signature.
Thus, the technique can be used to detect and quantify changes in sample biomo-
lecular composition. Apart from specificity, vibrational spectroscopy is also very
sensitive and can detect minute changes. Additional attributes, such as the non-
invasive and nondestructive nature of analysis and amenability to in vivo applica-
tion designs, render it ideal for use in biology and medicine. Applications of this
phenomenon are myriad and widespread. It is beyond the scope of this Spotlight
to review all biological/medical applications, and readers can refer to excellent
reviews on the subject by Hanlon et al.,' Tu and Chang,” Pence and
Mahadevan-Jansen,’ Petry et al., Singh et al.,’ Cialla-May et al.,’ Zhao et al.,’
Ahn et al.,® Krafft et al.,” and many others. One of the major focus areas is the
development of diagnostic and treatment tools for the biomedical industry, which
has a market with a 6.4% growth rate. Within this industry, vibrational spectros-
copy is especially suited for disease screening, early diagnosis, and disease pre-
vention, and caters to a market with a 7.3% growth rate.®

What mainly sets this technique apart from conventional screening/diagnostic
methodologies is its ability to provide a complete biochemical fingerprint of the
sample. Instead of detecting one or a few disease-associated factors, it gives infor-
mation on the whole metabolome—that is, the overall change in biomolecules
such as proteins, lipids, nucleic acids, carbohydrates, and some other specific mol-
ecules. This attribute is of particular advantage in complex diseases such as
cancer, where malignancy-specific changes vary greatly. The ability to profile an
entire sample’s biochemistry also makes this a powerful tool for detecting
changes from the normal, potentially signaling disease onset. However, this very
feature complicates data analysis to a great extent. Multiple spectral signatures
need to be compared across samples and give a single definitive output regarding
the sample. In light of extreme in-group variations encountered in biological sys-
tems, separating healthy tissue from diseased, especially for early onset, can
become very challenging.

Over the years, researchers have developed mathematical tools to tackle this
problem, giving rise to the field of chemometrics.'” A themed collection called
“Chemometrics: Tutorials” in advanced data analysis methods produced by the
Analytical Methods journal can be referred to for more insights on preprocessing''
and multivariate analysis.'>'> Gautam et al. have reviewed data processing in
detail, specifically for vibrational spectroscopy.'* The primary aim of the analysis
is to weigh the importance of each peak in the spectrum with respect to all other
spectra, decide which peaks have maximum variation, and reduce the data to take
only the chosen peaks into consideration for the final output. It is clear that the
analysis relies heavily on spectral variations, and thus it is very important to
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remove all confounding variations from the input spectra before subjecting them
to analysis. This operation is referred to as preprocessing. Common confounding
factors corrected for are sample background, optical errors, sample fluorescence,
charge-coupled device (CCD) response, and intensity variations. Optical errors
and sample background are corrected by acquiring a spectrum without the sample
and subtracting it from the sample spectrum. CCD response variation is offset by
dividing the sample spectrum by response from a standardized material (such as a
National Institute of Standards and Technology material). This step is important
for between-machines comparison and need not be applied if all data originate
from the same instrument. Fluorescence background may be removed by baseline
correction or by spectrum-first derivatization. Baseline correction involves sub-
tracting a polynomial from the sample spectrum and can be subjective. First deri-
vatization is an objective method and reduces the regions of spectra, where any
change in the y-axis values is gradual with respect to the x-axis values to near
zero. Since fluorescence signals are broad in nature, fluorescence signals are
accordingly reduced to near zero. In the case of sharp vibrational peaks, changes
in y-axis values are very rapid with respect to the corresponding x-axis values,
leading to nonzero values, isolating signals from background. Finally, intensity-
related variations can be removed by normalization. Normalization helps analysis
based only on peak variations—presence/absence/shape changes, rather than peak
intensity.

The preprocessed spectra are subjected to multivariate analysis. As mentioned
earlier, this selects important spectral variations and provides output based only
on the chosen signatures. The most common multivariate analysis tool is principal
component analysis (PCA). It is an unsupervised tool that does not take group
information into consideration. Simply put, it does not matter whether input spec-
tra are supplied with labels “normal,” “abnormal,” etc., or are unlabeled. PCA cal-
culates the mean of all input spectra, calculates the variation of each spectrum
from the average, and then ranks the varying spectral signatures with respect to
prevalence.

Consider that wavenumbers 1200, 1450, and 1680 cm™' vary in every input
spectra, 1340 and 1745 cm™" vary in 50% input spectra, and 1300 cm™' is varia-
ble in only 2% spectra; then PCA ranks the group 1200, 1450, and 1680 cm™ as
most important, 1340 and 1745 cm™' as next, and 1300 cm™' as having little sig-
nificance. The data are transformed to contain only these important wavenumbers
and used to separate spectra on the basis of these wavenumbers. The PCA ranks
are called principal components (PCs), and the results are presented as graphs of
PC scores, where scores are values assigned to each spectrum depending on the
extent of variation with respect to the chosen PC. Thus, the plot of PC1 versus
PC2 will group spectra with respect to presence/absence/change in wavenumbers
1200, 1450, and 1680 cm™! and 1340 and 1745 cm™'. PCA is usually considered
a robust analytical tool, uninfluenced and unbiased. However, it is limited by the
number of dimensions that can be plotted and visualized. For example, one cannot
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visualize group separation in a plot of PC1 versus PC2 versus PC3 versus PC4,
since only three plotting axes are available.

One way to circumvent this problem uses supervised analysis, which requires
input in groups with labels. These methods work on principles similar to PCA,
but there is a bias toward increasing intergroup separation and decreasing intra-
group separation by selecting the best orientation in #-dimensions. The results are
presented in the form of a confusion matrix; it displays the placement of each indi-
vidual spectrum in a particular group. The spectrum may be correctly placed in the
correct group (the same group as labeled) or in the wrong group. By the unique
arrangement of the confusion matrix, all diagonal element spectra are correctly
placed, whereas nondiagonal elements are incorrectly grouped. Such discriminant
analyses can apply linear, quadratic, partial least square, or other equations to
achieve group separations. They are prone to over-fitting, which can lead to errone-
ous conclusions. To reduce the chances of such errors, the spectra are further sub-
jected to cross-validation. Cross-validation works by dividing the input spectra
into training and test groups. The validity of the analysis is then checked based
on the power of the subset training spectra group building a model that can cor-
rectly predict the test group spectra. The more spectra that are correctly predicted,
the better the analysis. A commonly used cross-validation is the leave-one-out
(LOO) method, whereby one spectrum is removed and the remaining input spectra
are used to train a model, which is then used to predict the group of the one
removed spectrum. This is repeated until all spectra have been left out once. The
robustness of the model is determined by the number of spectra placed correctly
in groups. Finally, for every type of analysis, one can use the built model to predict
the group of the spectra whose group is unknown. This process is called fest
prediction.

There are several varied options available for preprocessing and analysis. Every
method has its own advantage and disadvantage, and spectroscopists need to adapt
the analysis routine that best suits the objectives of their studies. An analysis routine
is the group of consecutive steps that are followed to analyze spectroscopy data.
This understandably varies from lab to lab as well as experiment to experiment
within a lab. There are several types of software available to preprocess spectra
and perform multivariate analysis, such as LabSpec, Origin, OPUS, Minitab,
Cytospec, and many others. They are excellent tools for the exploration and fixing
of a routine. However, once a routine is established, it is time consuming to con-
tinue using multiple software for different steps. Programming platforms, such as
MATLAB®, R, Python, SciLab, etc., allow scripting that can incorporate all steps
and allow an analysis with a single click. Features such as turning on/off certain
steps or multivariate analysis can be designed without forgoing the single-click
option. Ultimately, the scripts may prove to be quickly exploratory as well as rou-
tine analysis tools, with the advantages of rapidity, accuracy, and ease of use. The
Spotlight details the simple commands that can achieve this with instructions for
using them to yield user-specific codes.





