Paper
24 October 2018 Estimating photosynthetically available radiation at the ocean surface from EPIC/DSCOVR data
Author Affiliations +
Proceedings Volume 10778, Remote Sensing of the Open and Coastal Ocean and Inland Waters; 1077806 (2018) https://doi.org/10.1117/12.2501675
Event: SPIE Asia-Pacific Remote Sensing, 2018, Honolulu, Hawaii, United States
Abstract
The Earth Polychromatic Imaging Camera (EPIC) onboard the Deep Space Climate Observatory (DSCOVR) in Lagrange-1 (L1) orbit provides observations of the Earth’s surface lit by the Sun at a cadence of 13 to 22 images/day and optical resolution of 16 km in 10 spectral bands from 317 to 780 nm. The EPIC data collected in the bands centered on 443, 551, and 680 nm are used to estimate daily mean photosynthetically available radiation (PAR) reaching the surface of the global, ice-free oceans. The solar irradiance reaching the surface is obtained by subtracting from the extraterrestrial irradiance (known), the irradiance reflected to space (estimated from the EPIC measurements), while taking into account atmospheric transmission (modeled). Clear and cloudy regions within a pixel do not need to be distinguished, i.e., the methodology is adapted to the relatively large EPIC pixels. A first daily mean EPIC PAR imagery is generated. Comparison with estimates from sensors in polar and geostationary orbits, namely MODIS and AHI, shows good agreement, with coefficients of determination of 0.79 and 0.92 and RMS differences of 8.2 and 5.7 E/m2/d, respectively, but overestimation by 1.08 E/m2/d (MODIS) and 3.44 E/m2/d (AHI). The advantages of using observations from L1 orbit are: 1) the daily cycle of cloudiness is well described (unlike from polar orbit) and 2) spatial resolution is not significantly degraded at high latitudes (unlike from geostationary orbit). The methodology can be easily extended to estimate ultraviolet (UV) surface irradiance using the spectral bands centered on 317, 325, 340, and 388 nm, all the more as ozone content, a key variable controlling atmospheric transmittance, is retrieved from the measurements.
© (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Robert Frouin, Jing Tan, Didier Ramon, Bryan Franz, and Hiroshi Murakami "Estimating photosynthetically available radiation at the ocean surface from EPIC/DSCOVR data", Proc. SPIE 10778, Remote Sensing of the Open and Coastal Ocean and Inland Waters, 1077806 (24 October 2018); https://doi.org/10.1117/12.2501675
Lens.org Logo
CITATIONS
Cited by 3 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Sensors

Sun

Atmospheric modeling

MODIS

Reflectivity

Clouds

Aerosols

Back to Top