Presentation + Paper
13 May 2019 Bi-frequency temporal phase unwrapping using deep learning
Author Affiliations +
Abstract
In fringe projection profilometry (FPP), multi-frequency phase unwrapping, as a classical algorithm for temporal phase unwrapping (TPU), can eliminate the phase ambiguities and obtain the unwrapped phase with the aid of additional wrapped phase maps with different fringe periods. However, based on the principle of multi-frequency phase unwrapping, it needs multiple groups of fringe patterns with different fringe periods to eliminate the phase ambiguities of the wrapped phase with high-frequency, which is not suitable for high-speed 3D measurement. If two frequency fringe patterns are only projected, the reliability of multi-frequency phase unwrapping will be decreased significantly. Inspired by deep learning techniques, in this study, we demonstrate that the deep neural networks can learn to perform temporal phase unwrapping after appropriate training, which substantially improves the reliability of phase unwrapping compared with the traditional multi-frequency TPU approach even when high-frequency fringe patterns are used. In our experiment, a challenging problem in TPU is that the unwrapped phase of 64-period fringe patterns cannot be directly unwrapped by only using a single-frequency phase, but it can be easily resolved by our method. Experimental results demonstrate the temporal phase unwrapping method using deep learning provides the best unwrapping reliability to realize the absolute 3D measurement for objects with complex surfaces.
Conference Presentation
© (2019) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Wei Yin, Chao Zuo, Shijie Feng, Tianyang Tao, and Qian Chen "Bi-frequency temporal phase unwrapping using deep learning", Proc. SPIE 10991, Dimensional Optical Metrology and Inspection for Practical Applications VIII, 109910D (13 May 2019); https://doi.org/10.1117/12.2520201
Lens.org Logo
CITATIONS
Cited by 3 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Fringe analysis

Neural networks

Reliability

3D metrology

Phase shifts

Algorithm development

Cameras

Back to Top