The accelerating structure of the laser wakefield accelerator (LWFA) is dynamic and highly sensitive to the local laser and plasma properties. It can expand and contract as it responds to the evolution of the laser and plasma fields. As a result, the position of, and environment within, the LWFA bubble are usually time dependent, which is not ideal for stable acceleration. Variations can have a negative impact on electron bunch properties, and are deleterious for ion channel lasers and plasma wigglers. We demonstrate how a laser pre-pulse improves the stability of the LWFA, and controls the evolution of the laser group and bubble velocity, which are important for determining LWFA dephasing and ultimately the electron bunch energy.
|