Presentation
1 August 2021 Direct quantification of robustness in topologically-protected photonic edge states at telecom wavelengths
Sonakshi Arora, Thomas A. Bauer, René Barczyk, Ewold Verhagen, Laurens K. Kuipers
Author Affiliations +
Abstract
Topologically tailored photonic crystals offer robust transport of optical states in quantum and classical systems. However, quantifying the robustness of edge states in topologically protected PhCs has remained elusive. In our recent work, we report a rigorous quantitative evaluation of topological photonic edge eigenstates, emulating the quantum valley Hall effect (VPC), and analyze their transport properties in the telecom wavelength range using a phase-resolved near-field optical microscope. Our results demonstrate that the backscattering energy ratio for the VPC is two orders of magnitude smaller compared to that in a conventional W1 waveguide. Such an evaluation opens a pathway for creating quantum photonic networks that can achieve secure and robust communications.
Conference Presentation
© (2021) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Sonakshi Arora, Thomas A. Bauer, René Barczyk, Ewold Verhagen, and Laurens K. Kuipers "Direct quantification of robustness in topologically-protected photonic edge states at telecom wavelengths", Proc. SPIE 11796, Active Photonic Platforms XIII, 117961F (1 August 2021); https://doi.org/10.1117/12.2594527
Advertisement
Advertisement
KEYWORDS
Near field

Wave propagation

Waveguides

Dispersion

Near field optics

Optical microscopes

Phase velocity

Back to Top