Paper
8 July 2022 Factors of inhibition of the development of cracks and brittle fracture in nanolayer structures
Author Affiliations +
Abstract
Surface modifying complexes with nanolayer architecture are widely used in various fields of activity (optical systems, tribological pairs, cutting tools, etc.). In many cases, brittle fracture as a result of active cracking is the key or even the dominant mechanism for the destruction of such complexes. The report discusses the factors that can slow down the development of cracks in nanolayer systems and, thus, increase their resistance to brittle fracture. Both theoretical substantiation and practical examples of crack propagation inhibition are presented. The influence of the crystalline structure of the coating on the cracking pattern has been studied. The investigation has found the significant effect of the crystalline structure of the coating layers on the cracking pattern. It can be noticed that in addition to the nanolayer structure, the pattern of crack propagation can also be affected by the crystalline structure of the coating. With a decrease in the deformation energy, the intercrystalline interfaces have a greater influence on the crack growth direction, and the crack can stop, resting against a crystal boundary. Thus, during the further modeling, it is also important to take into account the influence of the crystalline structure of the nanolayers.
© (2022) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Alexey Vereschaka and Marina Volosova "Factors of inhibition of the development of cracks and brittle fracture in nanolayer structures", Proc. SPIE 12283, 2021 International Conference on Optical Instruments and Technology: Micro/Nano Photonics: Materials and Devices, 122830C (8 July 2022); https://doi.org/10.1117/12.2618896
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Coating

Particles

Zirconium

Resistance

Crystals

Multilayers

Niobium

Back to Top