Presentation + Paper
14 June 2023 Impact of data variety on physics-informed neural network lens design
Marshall B. Lindsay, Scott D. Kovaleski, Andy G. Varner, Charlie Veal, Justice Weber, Derek T. Anderson, Stanton R. Price, Steven R. Price
Author Affiliations +
Abstract
The adoption of neural networks for optical component design has increased rapidly in recent years. In this design framework, the numerical simulation of optical wave propagation and material wave modulation are encoded directly as layers of a neural network. This direct encoding enables the optimization of physical quantities (e.g., the transmissivity values of the diffractive optical elements) by gradient descent and the backpropagation algorithm. For the body of work which uses these networks for simulation and optimization, there is a tendency to treat the training process as identical to traditional deep neural networks. However, to the best of our knowledge, there is yet an explicit evaluation of training parameters to support this intuition. This work aims to help fill this gap by providing an exploration and evaluation of data variety to help accelerate those in the community who wish to use this emerging design framework.The application of neural networks in optical component design has witnessed rapid growth in recent years. This design framework encodes the numerical simulation of optical wave propagation and material wave modulation directly within neural network layers, enabling the optimization of physical quantities, such as transmissivity values of diffractive optical elements, through gradient descent and backpropagation algorithms. Physics-informed neural networks have been employed in designing diffractive deep neural networks, optimizing holograms for near-eye displays and creating multi-objective traditional optics. However, there remains a lack of evaluation for training parameters, and discrete sampling considerations are often overlooked. To address these gaps, this study examines the impact of dataset variety on physics-informed neural networks in optimizing lenses that either satisfy or violate the Nyquist sampling criteria. Results show that increased data variety enhances optimized lens performance across all cases. Optimized lenses demonstrate improved imaging performance by reducing diffraction orders present in aliased analytical lenses. Moreover, we reveal that low data variety leads to overfit lenses that function as selective imagers, providing valuable insights for future lens design and optimization.
Conference Presentation
© (2023) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Marshall B. Lindsay, Scott D. Kovaleski, Andy G. Varner, Charlie Veal, Justice Weber, Derek T. Anderson, Stanton R. Price, and Steven R. Price "Impact of data variety on physics-informed neural network lens design", Proc. SPIE 12530, Advanced Optics for Imaging Applications: UV through LWIR VIII, 125300B (14 June 2023); https://doi.org/10.1117/12.2661856
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Neural networks

Wave propagation

Data modeling

Modulation

Wavefronts

Mathematical optimization

Overfitting

Back to Top