Abstract
A simple yet accurate model of shape memory alloys (SMAs) is proposed, which can consider asymmetric tension-compression ferroelastic behavior. Features of this model are (1) energy-based transformation criterion, (2) partial transformation rule based on the micromechanical viewpoint, (3) required transformation energy in the form of a sum of two exponential functions in terms of phase volume fraction, and (4) energy balance equation including thermoelastic effect and dissipated energy due to interaction between the phases. In this ferroelastic model, three phases are considered, namely, an austenitic phase, a tensile stress induced martensitic phase, and a compressive stress induced martensitic phase. The tension-compression asymmetry is expressed by using different required transformation energy functions in different transformation directions and by using different intrinsic strains and Young's moduli in different phases. Stress-strain hysteresis loops for a SMA bar under tensile-compressive cyclic loading are simulated. The obtained result shows that the proposed model can well capture the asymmetric stress-strain loops for tension and compression, minor loops, and effects of temperature and strain rate. This indicates that this model would be a useful tool for understanding the mechanism of SMA behavior and designing smart structures with SMA elements.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Tadashige Ikeda "Modeling of ferroelastic behavior of shape-memory alloys", Proc. SPIE 5757, Smart Structures and Materials 2005: Modeling, Signal Processing, and Control, (19 May 2005); https://doi.org/10.1117/12.598693
Lens.org Logo
CITATIONS
Cited by 6 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Shape memory alloys

Data modeling

Mathematical modeling

Smart structures

Temperature metrology

Heat treatments

Structural design

Back to Top