Paper
24 June 2013 OCT assisted identification of the grade of encrustation of urologic catheters
Ronald Sroka, Michaela Püls, Herbert Stepp, Katja Zilinberg, Markus Bader, Patrick Weidlich
Author Affiliations +
Abstract
Introduction: Ureteric stenting is a commonly used endourologic procedure for temporary and long-term drainage of an obstructed upper urinary tract. The indication for ureteric stenting is obstruction due to intrinsic (intraureteral stones, strictures, or tumors) or extrinsic (for example compressing pelvic or retroperitoneal mass) causes. Despite the fact that stents do certainly have proven benefits in all fields of urology, there are potential morbidities. The most common problem of indwelling ureteral stents is infection. As foreign body in the urinary system, stents act as a nidus for bacteria colonization, crystallization and encrustation. Bacteria induced biofilm formation predisposes for the crystallization of lithogenic salts, such as calcium-phosphate, calcium-oxalate, magnesium-phosphate on the surface initiating stent encrustation. It was the objective of this study to evaluate whether optical coherence tomography (OCT) using both the surface and the endoluminal technique is feasible to investigate the locations and degree of encrustation process in clinically used ureteral stents. Patients and methods: After removal from patients, fourteen polyurethane JJ stents were investigated. A fresh JJ served as a control. The external surfaces were examined using an endoscopic surface OCT whereas the intraluminal surfaces were investigated by an endoluminal radial OCT device. The focus was on detection of encrustation or crystalline sedimentation. Results: In 12 female and 2 male patients, the median indwelling time of the ureteral catheter was 100 days (range 19- 217). Using the endoluminal OCT, the size and grade of intraluminal encrustation could be expressed as a percentage relating to the open lumen of the reference stent. The maximum encrustation observed resulted in a remaining unrestricted lumen of 15-35% compared to the reference. The luminal reduction caused by encrustation was significantly higher at the proximal end of the ureteral stent as compared to its distal part. The extraluminal OCT-investigations facilitated the characterization of extraluminal encrustation. Conclusion: OCT techniques were feasible and facilitated the detection of encrustation of double pigtail catheters on both the extra and intra luminal surface. Quantitative expression of the degree of intraluminal encrustation could be achieved, with the most dense and thickened occurrence of intraluminal incrustation in the upper curl of the JJ stent.
© (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Ronald Sroka, Michaela Püls, Herbert Stepp, Katja Zilinberg, Markus Bader, and Patrick Weidlich "OCT assisted identification of the grade of encrustation of urologic catheters", Proc. SPIE 8803, Medical Laser Applications and Laser-Tissue Interactions VI, 88030Q (24 June 2013); https://doi.org/10.1117/12.2032031
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Optical coherence tomography

Crystals

Bacteria

Imaging systems

Polyurethane

Statistical analysis

Urinary system

Back to Top