Open Access
26 August 2021 Galaxy Evolution Probe
Jason Glenn, Charles M. Bradford, Erik Rosolowsky, Rashied Amini, Katherine Alatalo, Lee Armus, Andrew J. Benson, Tzu-Ching Chang, Jeremy Darling, Peter K. Day, Jeanette L. Domber, Duncan Farrah, Brandon Hensley, Sarah J. Lipscy, Bradley D. Moore, Sebastian Oliver, Joanna Perido, David C. Redding, John M. Rodgers, Raphael Shirley, Howard A. Smith, John B. Steeves, Carole E. Tucker, Jonas Zmuidzinas
Author Affiliations +
Abstract

The Galaxy Evolution Probe (GEP) is a concept for a mid- and far-infrared space observatory to measure key properties of large samples of galaxies with large and unbiased surveys. GEP will attempt to achieve zodiacal light and Galactic dust emission photon background-limited observations by utilizing a 6-K, 2.0-m primary mirror and sensitive arrays of kinetic inductance detectors (KIDs). It will have two instrument modules: a 10 to 400  μm hyperspectral imager with spectral resolution R  =  λ  /  Δλ  ≥  8 (GEP-I) and a 24 to 193  μm, R  =  200 grating spectrometer (GEP-S). GEP-I surveys will identify star-forming galaxies via their thermal dust emission and simultaneously measure redshifts using polycyclic aromatic hydrocarbon emission lines. Galaxy luminosities derived from star formation and nuclear supermassive black hole accretion will be measured for each source, enabling the cosmic star formation history to be measured to much greater precision than previously possible. Using optically thin far-infrared fine-structure lines, surveys with GEP-S will measure the growth of metallicity in the hearts of galaxies over cosmic time and extraplanar gas will be mapped in spiral galaxies in the local universe to investigate feedback processes. The science case and mission architecture designed to meet the science requirements is described, and the KID and readout electronics state of the art and needed developments are described. This paper supersedes the GEP concept study report cited in it by providing new content, including: a summary of recent mid-infrared KID development, a discussion of microlens array fabrication for mid-infrared KIDs, and additional context for galaxy surveys. The reader interested in more technical details may want to consult the concept study report.

CC BY: © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Jason Glenn, Charles M. Bradford, Erik Rosolowsky, Rashied Amini, Katherine Alatalo, Lee Armus, Andrew J. Benson, Tzu-Ching Chang, Jeremy Darling, Peter K. Day, Jeanette L. Domber, Duncan Farrah, Brandon Hensley, Sarah J. Lipscy, Bradley D. Moore, Sebastian Oliver, Joanna Perido, David C. Redding, John M. Rodgers, Raphael Shirley, Howard A. Smith, John B. Steeves, Carole E. Tucker, and Jonas Zmuidzinas "Galaxy Evolution Probe," Journal of Astronomical Telescopes, Instruments, and Systems 7(3), 034004 (26 August 2021). https://doi.org/10.1117/1.JATIS.7.3.034004
Received: 9 October 2020; Accepted: 27 July 2021; Published: 26 August 2021
Lens.org Logo
CITATIONS
Cited by 13 scholarly publications.
Advertisement
Advertisement
KEYWORDS
Galactic astronomy

Galaxy evolution

Stars

Spectroscopy

Sensors

Mid-IR

Mirrors

RELATED CONTENT

The Galaxy Evolution Probe a concept for a mid...
Proceedings of SPIE (July 24 2018)
From Euro50 toward a European ELT
Proceedings of SPIE (June 23 2006)
A far-infrared mapping spectrometer for SOFIA
Proceedings of SPIE (September 26 2007)
MANIAC a new mid and near infrared array...
Proceedings of SPIE (October 23 1997)
Filter wheel cameras for the NGST
Proceedings of SPIE (July 28 2000)
Sensitive far-IR survey spectroscopy: BLISS for SPICA
Proceedings of SPIE (July 19 2008)

Back to Top