21 May 2019 Phase-transition-induced one-dimensional amorphous α-Fe2O3/β-FeOOH homojunction for efficient photocatalytic water oxidation
Muhammad Qasim, Fei Xue, Maochang Liu, Liejin Guo
Author Affiliations +
Abstract
We report a one-dimensional porous intergrowth structure consisting of amorphous α-Fe2O3 and akaganeite (β-FeOOH). The homojunction, which features an intimate interface as well as a clean surface, facilitates charge separation and thus improves the photocatalytic O2 evolution activity. The success of the synthesis relies on a phase-transition process that involves the dehydration of β-FeOOH tetragonal nanorods (5.02 nm in average diameter and 25.51 nm in length, respectively). We find that the selective calcination temperature is crucial for retaining the rod shape, creating proper surface pores and intermediate phase segregations. If the temperature is too high (300°C), only crystallized α-Fe2O3 can be obtained. At a depressed temperature, intermediate amorphous α-Fe2O3, instead of the crystallized counterpart, largely emerges in situ, leading to the formation of amorphous α-Fe2O3  /  β-FeOOH intergrowth homojunctions. This preferential growth together with a type-II band alignment favors vertical interfacial charge transfer between the two components. Our results show that amorphous α-Fe2O3  /  β-FeOOH porous nanorods prepared at 200°C present a profound photocatalytic activity toward water oxidation. The rate of oxygen evolution reaches 90  μmoL h  −  1 g  −  1 under visible light irradiation without the addition of a cocatalyst. We believe the method can be extended for the design of other intergrowth junction structures for efficient photocatalysis.
© 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) 1947-7988/2019/$25.00 © 2019 SPIE
Muhammad Qasim, Fei Xue, Maochang Liu, and Liejin Guo "Phase-transition-induced one-dimensional amorphous α-Fe2O3/β-FeOOH homojunction for efficient photocatalytic water oxidation," Journal of Photonics for Energy 9(2), 026501 (21 May 2019). https://doi.org/10.1117/1.JPE.9.026501
Received: 28 January 2019; Accepted: 24 April 2019; Published: 21 May 2019
Lens.org Logo
CITATIONS
Cited by 6 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Nanorods

Crystals

Oxidation

Iron

Oxygen

Oxides

Molecules

Back to Top