Significance: During the development and early testing phases of new photoacoustic (PA) breast imaging systems, several choices need to be made in aspects of system design and measurement sequences. Decision-making can be complex for state-of-the-art systems such as 3D hybrid photoacoustic-ultrasound (PA-US) breast imagers intended for multispectral quantitative imaging. These systems have a large set of design choices and system settings that affect imaging performance in different ways and often require trade-offs. Decisions have to be made carefully as they can strongly influence the imaging performance.
Aim: A systematic approach to assess the influence of various choices on the imaging performance in carefully controlled laboratory situations is crucial before starting with human studies. Test objects and phantoms are used for first imaging studies, but most reported structures have a 2D geometry and are not suitable to assess all the image quality characteristics (IQCs) of 3D hybrid PA-US systems.
Approach: Our work introduces a suite of five test objects designed for hybrid PA-US systems with a 3D detection aperture. We present the test object designs and production protocols and explain how they can be used to study various performance measures. To demonstrate the utility of the developed objects, measurements are made with an existing tomographic PA system.
Results: Two test objects were developed for measurements of the US detectors’ impulse responses and light distribution on the breast surface. Three others were developed to assess image quality and quantitative accuracy of the PA and US modes. Three of the five objects were imaged to demonstrate their use.
Conclusions: The developed test objects allow one to study influences of various choices in design and system settings. With this, IQCs can be assessed as a function of measurement sequence settings for the PA and US modes in a controlled way. Systematic studies and measurements using these objects will help to optimize various system settings and measurement protocols in laboratory situations before embarking on human studies.
We present the Twente Photoacoustic Mammoscope 2, a photoacoustic breast imaging system employing a tomographic configuration. It images one breast pendant inside an imaging tank filled with water while a woman lies prone on a bed. A dual-head laser (755 and 1064 nm) illuminates the breast with one beam directed at the nipple and nine beams directed at the sides. Ultrasound signals are detected using 12 arc-shaped arrays, each curving along the pendant breast. Each array comprises 32 piezocomposite elements each with a center frequency of 1 MHz. The imaging tank and the ultrasound arrays rotate around the breast in steps to obtain additional multiple projections. Three-dimensional images are reconstructed using a filtered backprojection algorithm. The system is described in detail, and measurements on a test object are presented. As part of a preliminary study to assess the system’s in vivo performance, the breasts of two healthy volunteers were imaged. These images show the breast contour, the nipple, and the vascular anatomy within the breast. In the nipple of one case, multiple high-intensity “hot spots” are observed, which we suspect are associated with the lactiferous ducts terminating in the nipple.
We present the Twente Photoacoustic Mammoscope 2 (PAM 2) based on a 3D tomographic geometry. A functional optical contrast map of breast vascularization can be obtained in a noninvasive, radiation-free and painless manner. A woman lies prone on a bed with one breast pendant in an imaging tank with water, where 12 curved ultrasound arrays are mounted. Each array extends from chest wall towards the nipple following the contour of the pendant breast, and carries 32 detector elements. The detectors’ center frequency is 1 MHz. The breast is illuminated from multiple directions: the ventral side of the breast from the bottom and the areas close to the chest wall from the sides. The excitation wavelengths are 755 nm and 1064 nm. By rotating the imaging tank in between measurements, multiple projections can be obtained, providing a 3D image of the breast after reconstruction by means of a filtered backprojection. So far, breasts of healthy volunteers were imaged. Three-dimensional images of the breast contour, the nipple and blood vessel networks within the breast could be observed with high contrast and unprecedented detail.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.