Recent advances in distributed databases and computing have transformed the landscape of spatio-temporal machine learning. This paper presents GeoMesa, a distributed spatio-temporal database built on top of Hadoop and column-family databases such as Accumulo and HBase, that includes a suite of tools for indexing, managing and analyzing both vector and raster data. The indexing techniques use space filling curves to map multi-dimensional data to the single lexicographic list managed by the underlying distributed database. In contrast to traditional non-distributed RDBMS, GeoMesa is capable of scaling horizontally by adding more resources at runtime; the index rebalances across the additional resources. In the raster domain, GeoMesa leverages Accumulo's server-side iterators and aggregators to perform raster interpolation and associative map algebra operations in parallel at query time. The paper concludes with two geo-time data fusion examples: using GeoMesa to aggregate Twitter data by keywords; and georegistration to drape full-motion video (FMV) over terrain.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.