The BICEP3 and BICEP Array polarimeters are small-aperture refracting telescopes located at the South Pole designed to measure primordial gravitational wave signatures in the Cosmic Microwave Background (CMB) polarization, predicted by inflation. Constraining the inflationary signal requires not only excellent sensitivity, but also careful control of instrumental systematics. Both instruments use antenna-coupled orthogonally polarized detector pairs, and the polarized sky signal is reconstructed by taking the difference in each detector pair. As a result, the differential response between detectors within a pair becomes an important systematic effect we must control. Additionally, mapping the intensity and polarization response in regions away from the main beam can inform how sidelobe levels affect CMB measurements. Extensive calibration measurements are taken in situ every austral summer for control of instrumental systematics and instrument characterisation. In this work, we detail the set of beam calibration measurements that we conduct on the BICEP receivers, from deep measurements of main beam response to polarized beam response and sidelobe mapping. We discuss the impact of these measurements for instrumental systematics studies and design choices for future CMB receivers.
Measurements of B-mode polarization in the cosmic microwave background (CMB) sourced from primordial gravitational waves would provide information on the energy scale of inflation and its potential form. To achieve these goals, one must carefully characterize the Galactic foregrounds, which can be distinguished from the CMB by conducting measurements at multiple frequencies.
BICEP Array (BA) is the latest generation multi-frequency instrument of the BICEP/Keck program, which specifically targets degree-scale primordial B-modes in the CMB. In its final configuration, BA will consist of four small-aperture receivers, spanning six different frequency bands. The BA4 receiver is designed to characterize Galactic dust at 220/270 GHz. This receiver is currently undergoing commissioning at Stanford and is scheduled to deploy to the South Pole during the 2024-2025 austral summer. Here, we will provide an overview of this high frequency receiver, discussing the integration status and test results as it is being commissioned.
Constraining the Galactic foregrounds with multi-frequency Cosmic Microwave Background (CMB) observations is an essential step towards ultimately reaching the sensitivity to measure primordial gravitational waves (PGWs), the sign of inflation after the Big-Bang that would be imprinted on the CMB. The BICEP Array is a set of multi-frequency cameras designed to constrain the energy scale of inflation through CMB B-mode searches while also controlling the polarized galactic foregrounds. The lowest frequency BICEP Array receiver (BA1) has been observing from the South Pole since 2020 and provides 30 GHz and 40 GHz data to characterize galactic synchrotron in our CMB maps. In this paper, we present the design of the BA1 detectors and the full optical characterization of the camera including the on-sky performance at the South Pole. The paper also introduces the design challenges during the first observing season including the effect of out-of-band photons on detectors performance. It also describes the tests done to diagnose that effect and the new upgrade to minimize these photons, as well as installing more dichroic detectors during the 2022 deployment season to improve the BA1 sensitivity. We finally report background noise measurements of the detectors with the goal of having photon-noise dominated detectors in both optical channels. BA1 achieves an improvement in mapping speed compared to the previous deployment season.
The BICEP3 Polarimeter is a small aperture, refracting telescope, dedicated to the observation of the Cosmic Microwave Background (CMB) at 95GHz. It is designed to target degree angular scale polarization patterns, in particular the very-much-sought-after primordial B-mode signal, which is a unique signature of cosmic inflation. The polarized signal from the sky is reconstructed by differencing co-localized, orthogonally polarized superconducting Transition Edge Sensor (TES) bolometers. In this work, we present absolute measurements of the polarization response of the detectors for more than approximately 800 functioning detector pairs of the BICEP3 experiment, out of a total of approximately 1000. We use a specifically designed Rotating Polarized Source (RPS) to measure the polarization response at multiple source and telescope boresight rotation angles, to fully map the response over 360 degrees. We present here polarization properties extracted from on-site calibration data taken in January 2022. A similar calibration campaign was performed in 2018, but we found that our constraint was dominated by systematics on the level of approximately 0.5° . After a number of improvements to the calibration set-up, we are now able to report a significantly lower level of systematic contamination. In the future, such precise measurements will be used to constrain physics beyond the standard cosmological model, namely cosmic birefringence.
New experiments that target the B-mode polarization signals in the Cosmic Microwave Background require more sensitivity, more detectors, and thus larger-aperture millimeter-wavelength telescopes, than previous experiments. These larger apertures require ever larger vacuum windows to house cryogenic optics. Scaling up conventional vacuum windows, such as those made of High Density Polyethylene (HDPE), require a corresponding increase in the thickness of the window material to handle the extra force from the atmospheric pressure. Thicker windows cause more transmission loss at ambient temperatures, increasing optical loading and decreasing sensitivity. We have developed the use of woven High Modulus Polyethylene (HMPE), a material 100 times stronger than HDPE, to manufacture stronger, thinner windows using a pressurized hot lamination process. We discuss the development of a specialty autoclave for generating thin laminate vacuum windows and the optical and mechanical characterization of full scale science grade windows, with the goal of developing a new window suitable for BICEP Array cryostats and for future CMB applications.
Observations of the Cosmic Microwave Background rely on cryogenic instrumentation with cold detectors, readout, and optics providing the low noise performance and instrumental stability required to make more sensitive measurements. It is therefore critical to optimize all aspects of the cryogenic design to achieve the necessary performance, with low temperature components and acceptable system cooling requirements. In particular, we will focus on our use of thermal filters and cold optics, which reduce the thermal load passed along to the cryogenic stages. To test their performance, we have made a series of in situ measurements while integrating the third receiver for the BICEP Array telescope. In addition to characterizing the behavior of this receiver, these measurements continue to refine the models that are being used to inform design choices being made for future instruments.
This conference presentation was prepared for the Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI conference at SPIE Astronomical Telescopes + Instrumentation, 2022.
The Bicep/Keck Array experiment is a series of small-aperture refracting telescopes observing degree-scale Cosmic Microwave Background polarization from the South Pole in search of a primordial B-mode signature. As a pair differencing experiment, an important systematic that must be controlled is the differential beam response between the co-located, orthogonally polarized detectors. We use high-fidelity, in-situ measurements of the beam response to estimate the temperature-to-polarization (T → P) leakage in our latest data including observations from 2016 through 2018. This includes three years of Bicep3 observing at 95 GHz, and multifrequency data from Keck Array. Here we present band-averaged far-field beam maps, differential beam mismatch, and residual beam power (after filtering out the leading difference modes via deprojection) for these receivers. We show preliminary results of "beam map simulations," which use these beam maps to observe a simulated temperature (no Q/U) sky to estimate T → P leakage in our real data.
A detection of curl-type (B-mode) polarization of the primary CMB would be direct evidence for the inflationary paradigm of the origin of the Universe. The Bicep/Keck Array (BK) program targets the degree angular scales, where the power from primordial B-mode polarization is expected to peak, with ever-increasing sensitivity and has published the most stringent constraints on inflation to date. Bicep Array (BA) is the Stage-3 instrument of the BK program and will comprise four Bicep3-class receivers observing at 30/40, 95, 150 and 220/270 GHz with a combined 32,000+ detectors; such wide frequency coverage is necessary for control of the Galactic foregrounds, which also produce degree-scale B-mode signal. The 30/40 GHz receiver is designed to constrain the synchrotron foreground and has begun observing at the South Pole in early 2020. By the end of a 3-year observing campaign, the full Bicep Array instrument is projected to reach σr between 0.002 and 0.004, depending on foreground complexity and degree of removal of B-modes due to gravitational lensing (delensing). This paper presents an overview of the design, measured on-sky performance and calibration of the first BA receiver. We also give a preview of the added complexity in the time-domain multiplexed readout of the 7,776-detector 150 GHz receiver.
BICEP3 is a 520 mm aperture on-axis refracting telescope at the South Pole, which observes the polarization of the cosmic microwave background (CMB) at 95 GHz to search for the B-mode signal from inflationary gravitational waves. In addition to this main target, we have developed a low-elevation observation strategy to extend coverage of the Southern sky at the South Pole, where BICEP3 can quickly achieve degree-scale E-mode measurements over a large area. An interesting E-mode measurement is probing a potential polarization anomaly around the CMB Cold Spot. During the austral summer seasons of 2018-19 and 2019-20, BICEP3 observed the sky with a flat mirror to redirect the beams to various low elevation ranges. The preliminary data analysis shows degree-scale E-modes measured with high signal-to-noise ratio.
The BICEP3 CMB Polarimeter is a small-aperture refracting telescope located at the South Pole and is specifically designed to search for the possible signature of inflationary gravitational waves in the Cosmic Microwave Background (CMB). The experiment measures polarization on the sky by differencing the signal of co-located, orthogonally polarized antennas coupled to Transition Edge Sensor (TES) detectors. We present precise measurements of the absolute polarization response angles and polarization efficiencies for nearly all of BICEP3's ~800 functioning polarization-sensitive detector pairs from calibration data taken in January 2018. Using a Rotating Polarized Source (RPS), we mapped polarization response for each detector over a full 360 degrees of source rotation and at multiple telescope boresight rotations from which per-pair polarization properties were estimated. In future work, these results will be used to constrain signals predicted by exotic physical models such as Cosmic Birefringence.
BICEP Array is a degree-scale Cosmic Microwave Background (CMB) experiment that will search for primordial B-mode polarization while constraining Galactic foregrounds. BICEP Array will be comprised of four receivers to cover a broad frequency range with channels at 30/40, 95, 150 and 220/270 GHz. The first low-frequency receiver will map synchrotron emission at 30 and 40 GHz and will deploy to the South Pole at the end of 2019. In this paper, we give an overview of the BICEP Array science and instrument, with a focus on the detector module. We designed corrugations in the metal frame of the module to suppress unwanted interactions with the antenna-coupled detectors that would otherwise deform the beams of edge pixels. This design reduces the residual beam systematics and temperature-to-polarization leakage due to beam steering and shape mismatch between polarized beam pairs. We report on the simulated performance of single- and wide-band corrugations designed to minimize these effects. Our optimized design alleviates beam differential ellipticity caused by the metal frame to about 7% over 57% bandwidth (25 to 45 GHz), which is close to the level due the bare antenna itself without a metal frame. Initial laboratory measurements are also presented.
BICEP3 is a 520mm aperture on-axis refracting telescope observing the polarization of the cosmic microwave background (CMB) at 95GHz in search of the B-mode signal originating from in ationary gravitational waves. BICEP3's focal plane is populated with modularized tiles of antenna-coupled transition edge sensor (TES) bolometers. BICEP3 was deployed to the South Pole during 2014-15 austral summer and has been operational since. During the 2016-17 austral summer, we implemented changes to optical elements that lead to better noise performance. We discuss this upgrade and show the performance of BICEP3 at its full mapping speed from the 2017 and 2018 observing seasons. BICEP3 achieves an order-of-magnitude improvement in mapping speed compared to a Keck 95GHz receiver. We demonstrate 6.6μK√s noise performance of the BICEP3 receiver.
Targeting faint polarization patterns arising from Primordial Gravitational Waves in the Cosmic Microwave Background requires excellent observational sensitivity. Optical elements in small aperture experiments such as Bicep3 and Keck Array are designed to optimize throughput and minimize losses from transmission, reflection and scattering at millimeter wavelengths. As aperture size increases, cryostat vacuum windows must withstand larger forces from atmospheric pressure and the solution has often led to a thicker window at the expense of larger transmission loss. We have identified a new candidate material for the fabrication of vacuum windows: with a tensile strength two orders of magnitude larger than previously used materials, woven high-modulus polyethylene could allow for dramatically thinner windows, and therefore significantly reduced losses and higher sensitivity. In these proceedings we investigate the suitability of high-modulus polyethylene windows for ground-based CMB experiments, such as current and future receivers in the Bicep/Keck Array program. This includes characterizing their optical transmission as well as their mechanical behavior under atmospheric pressure. We find that such ultra-thin materials are promising candidates to improve the performance of large-aperture instruments at millimeter wavelengths, and outline a plan for further tests ahead of a possible upcoming field deployment of such a science-grade window.
The compelling science case for the observation of B-mode polarization in the cosmic microwave background (CMB) is driving the CMB community to expand the observed sky fraction, either by extending survey sizes or by deploying receivers to potential new northern sites. For ground-based CMB instruments, poorly-mixed atmospheric water vapor constitutes the primary source of short-term sky noise. This results in short-timescale brightness fluctuations, which must be rejected by some form of modulation. To maximize the sensitivity of ground-based CMB observations, it is useful to understand the effects of atmospheric water vapor over timescales and angular scales relevant for CMB polarization measurements. To this end, we have undertaken a campaign to perform a coordinated characterization of current and potential future observing sites using scanning 183 GHz water vapor radiometers (WVRs). So far, we have deployed two identical WVR units; one at South Pole, Antarctica, and the other at Summit Station, Greenland. The former site has a long heritage of ground based CMB observations and is the current location of the Bicep/Keck Array telescopes and the South Pole Telescope. The latter site, though less well characterized, is under consideration as a northern-hemisphere location for future CMB receivers. Data collection from this campaign began in January 2016 at South Pole and July 2016 at Summit Station. Data analysis is ongoing to reduce the data to a single spatial and temporal statistic that can be used for one-to-one site comparison.
Bicep Array is the newest multi-frequency instrument in the Bicep/Keck Array program. It is comprised of four 550mm aperture refractive telescopes observing the polarization of the cosmic microwave background (CMB) at 30/40, 95, 150 and 220/270 GHz with over 30,000 detectors. We present an overview of the receiver, detailing the optics, thermal, mechanical, and magnetic shielding design. Bicep Array follows Bicep3's modular focal plane concept, and upgrades to 6" wafer to reduce fabrication with higher detector count per module. The first receiver at 30/40GHz is expected to start observing at the South Pole during the 2019-20 season. By the end of the planned Bicep Array program, we project 0.002 ⪅ σ(r) ⪅ 0.006, assuming current modeling of polarized Galactic foreground and depending on the level of delensing that can be achieved with higher resolution maps from the South Pole Telescope.
Bicep Array is a cosmic microwave background (CMB) polarization experiment that will begin observing at the South Pole in early 2019. This experiment replaces the five Bicep2 style receivers that compose the Keck Array with four larger Bicep3 style receivers observing at six frequencies from 30 to 270GHz. The 95GHz and 150GHz receivers will continue to push the already deep Bicep/Keck CMB maps while the 30/40GHz and 220/270GHz receivers will constrain the synchrotron and galactic dust foregrounds respectively. Here we report on the design and performance of the Bicep Array instruments focusing on the mount and cryostat systems.
H. Hui, P. Ade, Z. Ahmed, K. Alexander, M. Amiri, D. Barkats, S. Benton, C. Bischoff, J. Bock, H. Boenish, R. Bowens-Rubin, I. Buder, E. Bullock, V. Buza, J. Connors, J. Filippini, S. Fliescher, J. Grayson, M. Halpern, S. Harrison, G. Hilton, V. Hristov, K. Irwin, J. Kang, K. Karkare, E. Karpel, S. Kefeli, S. Kernasovskiy, J. Kovac, C. L. Kuo, E. Leitch, M. Lueker, K. Megerian, V. Monticue, T. Namikawa, C. Netterfield, H. Nguyen, R. O'Brient, R. Ogburn, C. Pryke, C. Reintsema, S. Richter, R. Schwarz, C. Sorensen, C. Sheehy, Z. Staniszewski, B. Steinbach, G. Teply, K. Thompson, J. Tolan, C. Tucker, A. Turner, A. Vieregg, A. Wandui, A. Weber, D. Wiebe, J. Willmert, W. L. Wu, K. W. Yoon
BICEP3, the latest telescope in the BICEP/Keck program, started science observations in March 2016. It is a 550mm aperture refractive telescope observing the polarization of the cosmic microwave background at 95 GHz. We show the focal plane design and detector performance, including spectral response, optical efficiency and preliminary sensitivity of the upgraded BICEP3. We demonstrate 9.72 μKCMB√s noise performance of the BICEP3 receiver.
Atacama Large Millimeter/submillimeter Array (ALMA) is the world’s largest millimeter/ submillimeter (mm / Submm) interferometer. Along with science observations, ALMA has performed several long baseline campaigns in the last 6 years to characterize and optimize its long baseline capabilities. To achieve full long baseline capability of ALMA, it is important to understand the characteristics of atmospheric phase fluctuation at long baselines, since it is believed to be the main cause of mm/submm image degradation. For the first time, we present detailed properties of atmospheric phase fluctuation at mm/submm wavelength from baselines up to 15 km in length. Atmospheric phase fluctuation increases as a function of baseline length with a power-law slope close to 0.6, and many of the data display a shallower slope (02.-03) at baseline length greater than about 15 km. Some of the data, on the other hand, show a single slope up to the maximum baseline length of around 15 km. The phase correction method based on water vapor radiometers (WVRs) works well, especially for cases with precipitable water vapor (PWV) greater than 1 mm, typically yielding a 50% decrease or more in the degree of phase fluctuation. However, signicant amount of atmospheric phase fluctuation still remains after the WVR phase correction: about 200 micron in rms excess path length (rms phase fluctuation in unit of length) even at PWV less than 1 mm. This result suggests the existence of other non-water-vapor sources of phase fluctuation. and emphasizes the need for additional phase correction methods, such as band-to-band and/or fast switching.
K. Karkare, P. A. Ade, Z. Ahmed, K. Alexander, M. Amiri, D. Barkats, S. Benton, C. Bischoff, J. Bock, H. Boenish, R. Bowens-Rubin, I. Buder, E. Bullock, V. Buza, J. Connors, J. Filippini, S. Fliescher, J. Grayson, M. Halpern, S. Harrison, G. Hilton, V. Hristov, H. Hui, K. Irwin, J. Kang, E. Karpel, S. Kefeli, S. Kernasovskiy, J. Kovac, C. L. Kuo, E. Leitch, M. Lueker, K. Megerian, V. Monticue, T. Namikawa, C. Netterfield, H. T. Nguyen, R. O'Brient, R. Ogburn, C. Pryke, C. Reintsema, S. Richter, M. St. Germaine, R. Schwarz, C. Sheehy, Z. Staniszewski, B. Steinbach, G. Teply, K. Thompson, J. Tolan, C. Tucker, A. Turner, A. Vieregg, A. Wandui, A. Weber, J. Willmert, C. L. Wong, W. L. Wu, K. W. Yoon
BICEP3 is a small-aperture refracting cosmic microwave background (CMB) telescope designed to make sensitive polarization maps in pursuit of a potential B-mode signal from inflationary gravitational waves. It is the latest in the Bicep/Keck Array series of CMB experiments located at the South Pole, which has provided the most stringent constraints on inflation to date. For the 2016 observing season, BICEP3 was outfitted with a full suite of 2400 optically coupled detectors operating at 95 GHz. In these proceedings we report on the far field beam performance using calibration data taken during the 2015-2016 summer deployment season in situ with a thermal chopped source. We generate high-fidelity per-detector beam maps, show the array-averaged beam profile, and characterize the differential beam response between co-located, orthogonally polarized detectors which contributes to the leading instrumental systematic in pair differencing experiments. We find that the levels of differential pointing, beamwidth, and ellipticity are similar to or lower than those measured for Bicep2 and Keck Array. The magnitude and distribution of Bicep3’s differential beam mismatch – and the level to which temperature-to-polarization leakage may be marginalized over or subtracted in analysis - will inform the design of next-generation CMB experiments with many thousands of detectors.
J. Grayson, P. A. Ade, Z. Ahmed, K. Alexander, M. Amiri, D. Barkats, S. Benton, C. Bischoff, J. Bock, H. Boenish, R. Bowens-Rubin, I. Buder, E. Bullock, V. Buza, J. Connors, J. Filippini, S. Fliescher, M. Halpern, S. Harrison, G. Hilton, V. Hristov, H. Hui, K. Irwin, J. Kang, K. Karkare, E. Karpel, S. Kefeli, S. Kernasovskiy, J. Kovac, C. L. Kuo, E. Leitch, M. Lueker, K. Megerian, V. Monticue, T. Namikawa, C. Netterfield, H. Nguyen, R. O'Brient, R. Ogburn, C. Pryke, C. Reintsema, S. Richter, R. Schwarz, C. Sorenson, C. Sheehy, Z. Staniszewski, B. Steinbach, G. Teply, K. Thompson, J. Tolan, C. Tucker, A. Turner, A. Vieregg, A. Wandui, A. Weber, D. Wiebe, J. Willmert, W. L. Wu, K. W. Yoon
Bicep3 is a 520mm aperture, compact two-lens refractor designed to observe the polarization of the cosmic microwave background (CMB) at 95 GHz. Its focal plane consists of modularized tiles of antenna-coupled transition edge sensors (TESs), similar to those used in Bicep2 and the Keck Array. The increased per-receiver optical throughput compared to Bicep2/Keck Array, due to both its faster f=1:7 optics and the larger aperture, more than doubles the combined mapping speed of the Bicep/Keck program. The Bicep3 receiver was recently upgraded to a full complement of 20 tiles of detectors (2560 TESs) and is now beginning its second year of observation (and first science season) at the South Pole. We report on its current performance and observing plans. Given its high per-receiver throughput while maintaining the advantages of a compact design, Bicep3- class receivers are ideally suited as building blocks for a 3rd-generation CMB experiment, consisting of multiple receivers spanning 35 GHz to 270 GHz with total detector count in the tens of thousands. We present plans for such an array, the new "BICEP Array" that will replace the Keck Array at the South Pole, including design optimization, frequency coverage, and deployment/observing strategies.
Searching for evidence of inflation by measuring B-modes in the cosmic microwave background (CMB) polarization at degree angular scales remains one of the most compelling experimental challenges in cosmology. BICEP2 and the Keck Array are part of a program of experiments at the South Pole whose main goal is to achieve the sensitivity and systematic control necessary for measurements of the tensor-to-scalar ratio at σ(r) ~0:01. Beam imperfections that are not sufficiently accounted for are a potential source of spurious polarization that could interfere with that goal. The strategy of BICEP2 and the Keck Array is to completely characterize their telescopes' polarized beam response with a combination of in-lab, pre-deployment, and on-site calibrations. We Sereport the status of these experiments, focusing on continued improved understanding of their beams. Far-field measurements of the BICEP2 beam with a chopped thermal source, combined with analysis improvements, show that the level of residual beam-induced systematic errors is acceptable for the goal of σ(r) ~ 0:01 measurements. Beam measurements of the Keck Array side lobes helped identify a way to reduce optical loading with interior cold baffles, which we installed in late 2013. These baffles reduced total optical loading, leading to a ~ 10% increase in mapping speed for the 2014 observing season. The sensitivity of the Keck Array continues to improve: for the 2013 season it was 9:5 μK _/s noise equivalent temperature (NET). In 2014 we converted two of the 150-GHz cameras to 100 GHz for foreground separation capability. We have shown that the BICEP2 and the Keck Array telescope technology is sufficient for the goal of σ(r) ~ 0:01 measurements. Furthermore, the program is continuing with BICEP3, a 100-GHz telescope with 2560 detectors.
The inflationary paradigm of the early universe predicts a stochastic background of gravitational waves which would generate a B-mode polarization pattern in the cosmic microwave background (CMB) at degree angular scales. Precise measurement of B-modes is one of the most compelling observational goals in modern cosmology. Since 2011, the Keck Array has deployed over 2500 transition edge sensor (TES) bolometer detectors at 100 and 150 GHz to the South Pole in pursuit of degree-scale B-modes, and Bicep3 will follow in 2015 with 2500 more at 100 GHz. Characterizing the spectral response of these detectors is important for controlling systematic effects that could lead to leakage from the temperature to polarization signal, and for understanding potential coupling to atmospheric and astrophysical emission lines. We present complete spectral characterization of the Keck Array detectors, made with a Martin-Puplett Fourier Transform Spectrometer at the South Pole, and preliminary spectra of Bicep3 detectors taken in lab. We show band centers and effective bandwidths for both Keck Array bands, and use models of the atmosphere at the South Pole to cross check our absolute calibration. Our procedure for obtaining interferograms in the field with automated 4-axis coupling to the focal plane represents an important step towards efficient and complete spectral characterization of next-generation instruments more than 10000 detectors.
We present the phase characteristics study of the Atacama Large Millimeter / submillimeter Array (ALMA) long (up to 3 km) baseline, which is the longest baseline tested so far using ALMA. The data consist of long time-scale (10 20 minutes) measurements on a strong point source (i.e., bright quasar) at various frequency bands (bands 3, 6, and 7, which correspond to the frequencies of about 88 GHz, 232 GHz, and 336 GHz) Water vapor radiometer (WVR) phase correction works well even at long baselines, and the efficiency is better at higher PWV (< 1mm) condition, consistent with the past studies. We calculate the spatial structure function of phase fluctuation, and display that the phase fluctuation (i.e., rms phase) increases as a function of baseline length, and some data sets show turn-over around several hundred meters to km and being almost constant at longer baselines. This is the first millimeter / submillimeter structure function at this long baseline length, and to show the turn-over of the structure function. Furthermore, the observation of the turn-over indicates that even if the ALMA baseline length extends to the planned longest baseline of 15 km, fringes will be detected at a similar rms phase fluctuation as that at a few km baseline lengths. We also calculate the coherence time using the 3 km baseline data, and the results indicate that the coherence time for band 3 is longer than 400 seconds in most of the data (both in the raw and WVR-corrected data) For bands 6 and 7, WVR-corrected data have about twice longer coherence time, but it is better to use fast switching method to avoid the coherence loss.
We present results of feasibility studies of Atacama Large Millimeter/submillimeter Array (ALMA) interferom-
eter phase calibration scheme combined with the Fast Switching (FS) phase referencing and the Water Vapor
Radiometer (WVR) phase correction (FS+WVR phase correction). With FS scheme, ALMA antennas observe
a scientific target source and a nearby calibrator by turn very quickly. Because interferometer phase errors of the
target due to the water vapor contents commonly exist in those of the calibrator, the target phase is corrected
with the calibrator phase. We have demonstrated the FS+WVR phase correction for ALMA with baselines up to
2.7 km for various switching cycle times and separations between sources. For instance, in the case of sources with
the 1° separation, root-mean-square phases of the target were reduced from 300 to 40 microns in path length for
1 km baselines, and the target interferometer phases could be stabilized to an ALMA specification requirement
level for the interferometer phase stability. We also analytically evaluated the root-mean-square phase corrected
with the FS+WVR phase correction to predict the performance as a function of the separation and switching
cycle time.
We present the temporal phase stability of the entire ALMA system. We first verified the temporal phase stability: We observed a strong quasar for a long time (a few tens of minutes), derived the temporal structure function after the atmospheric phase correction using the water vapor radiometers (WVRs), and confirmed that the phase stability of all the baselines reached the ALMA specification. We then verified frequency transfer between bands: We observed a bright quasar and switched between the two frequency bands, and confirmed that the phase returned to the original values within the phase fluctuation. In addition to these results, we also studied the effectiveness of the WVR phase correction at various frequencies, baseline lengths, and weather conditions.
The Atacama Large Millimeter/submillimeter Array (ALMA) will be composed of 66 high precision antennae located at
5000 meters altitude in northern Chile. This paper will present the methodology, tools and processes adopted to system
engineer a project of high technical complexity, by system engineering teams that are remotely located and from
different cultures, and in accordance with a demanding schedule and within tight financial constraints. The technical and
organizational complexity of ALMA requires a disciplined approach to the definition, implementation and verification of
the ALMA requirements. During the development phase, System Engineering chairs all technical reviews and facilitates
the resolution of technical conflicts. We have developed analysis tools to analyze the system performance, incorporating
key parameters that contribute to the ultimate performance, and are modeled using best estimates and/or measured values
obtained during test campaigns. Strict tracking and control of the technical budgets ensures that the different parts of the
system can operate together as a whole within ALMA boundary conditions. System Engineering is responsible for
acceptances of the thousands of hardware items delivered to Chile, and also supports the software acceptance process. In
addition, System Engineering leads the troubleshooting efforts during testing phases of the construction project. Finally,
the team is conducting System level verification and diagnostics activities to assess the overall performance of the
observatory. This paper will also share lessons learned from these system engineering and verification approaches.
The ALMA radio-telescope, currently under construction in northern Chile, is a very advanced instrument that
presents numerous challenges. From a software perspective, one critical issue is the design of graphical user
interfaces for operations monitoring and control that scale to the complexity of the system and to the massive
amounts of data users are faced with. Early experience operating the telescope with only a few antennas has
shown that conventional user interface technologies are not adequate in this context. They consume too much
screen real-estate, require many unnecessary interactions to access relevant information, and fail to provide
operators and astronomers with a clear mental map of the instrument. They increase extraneous cognitive load,
impeding tasks that call for quick diagnosis and action.
To address this challenge, the ALMA software division adopted a user-centered design approach. For the
last two years, astronomers, operators, software engineers and human-computer interaction researchers have
been involved in participatory design workshops, with the aim of designing better user interfaces based on
state-of-the-art visualization techniques. This paper describes the process that led to the development of those
interface components and to a proposal for the science and operations console setup: brainstorming sessions,
rapid prototyping, joint implementation work involving software engineers and human-computer interaction
researchers, feedback collection from a broader range of users, further iterations and testing.
The ALMA aperture synthesis radio telescope is under construction in northern Chile. This paper presents the
organization and process of ALMA System Verification. The purpose of System Verification is to measure the
performance of the integrated instrument with respect to the ALMA System Technical Requirements. The System
Technical Requirements flow down from the Science Requirements of the telescope and are intended to guide the design
of the array and set the standards for technical performance. The process of System Verification will help determine
how well the ALMA telescope meets its science goals. Some verification results are discussed.
We present a method of cross-calibrating the polarization angle of a polarimeter using Bicep Galactic observations.
Bicep was a ground based experiment using an array of 49 pairs of polarization sensitive bolometers
observing from the geographic South Pole at 100 and 150 GHz. The Bicep polarimeter is calibrated to ±0.01
in cross-polarization and less than ±0.7° in absolute polarization orientation. Bicep observed the temperature
and polarization of the Galactic plane (R.A = 100° ~ 270° and Dec. = -67° ~ -48°). We show that the
statistical error in the 100 GHz Bicep Galaxy map can constrain the polarization angle offset of Wmap W band
to 0.6° ± 1.4°. The expected 1σ errors on the polarization angle cross-calibration for Planck or EPIC are 1.3°
and 0.3° at 100 and 150 GHz, respectively. We also discuss the expected improvement of the Bicep Galactic
field observations with forthcoming Bicep2 and Keck observations.
Bicep is a ground-based millimeter-wave bolometric array designed to target the primordial gravity wave signature
on the B-mode polarization of the cosmic microwave background (CMB) at degree angular scales. Currently
in its third year of operation at the South Pole, Bicep is measuring the CMB polarization with unprecedented
sensitivity at 100 and 150 GHz in the cleanest available 2% of the sky, as well as deriving independent constraints
on the diffuse polarized foregrounds with select observations on and off the Galactic plane. Instrument
calibrations are discussed in the context of rigorous control of systematic errors, and the performance during the
first two years of the experiment is reviewed.
The Robinson Telescope (BICEP) is a ground-based millimeter-wave bolometric array designed to study the polarization of the cosmic microwave background radiation (CMB) and galactic foreground emission. Such measurements probe the energy scale of the inflationary epoch, tighten constraints on cosmological parameters, and verify our current understanding of CMB physics. Robinson consists of a 250-mm aperture refractive telescope that provides an instantaneous field-of-view of 17° with angular resolution of 55' and 37' at 100 GHz and 150 GHz, respectively. Forty-nine pair of polarization-sensitive bolometers are cooled to 250 mK using a 4He/3He/3He sorption fridge system, and coupled to incoming radiation via corrugated feed horns. The all-refractive optics is cooled to 4 K to minimize polarization systematics and instrument loading. The fully steerable 3-axis mount is capable of continuous boresight rotation or azimuth scanning at speeds up to 5 deg/s. Robinson has begun its first season of observation at the South Pole. Given the measured performance of the instrument along with the excellent observing environment, Robinson will measure the E-mode polarization with high sensitivity, and probe for the B-modes to unprecedented depths. In this paper we discuss aspects of the instrument design and their scientific motivations, scanning and operational strategies, and the results of initial testing and observations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.