Laser welding can make ceramics integral components in devices for harsh environments as well as in optoelectronic and/or electronic packages needing visible-radio frequency transparency.
We will discuss an ultrafast pulsed laser welding approach that relies on focusing light on interfaces to ensure an optical interaction volume in ceramics to stimulate nonlinear absorption processes, causing localized melting rather than ablation. We will begin by comparing laser joining of glasses and ceramics. We will then introduce various methods for controlling the absorption and scattering properties for ceramics because the key to the technique is the interplay between linear and nonlinear optical properties and laser energy–material coupling. Finally, we will discuss results of laser material interaction on various oxide ceramics.
Conventional materials engineering approaches for polycrystalline ceramic gain media rely on optically isotropic crystals with high equilibrium solubility of luminescent rare-earth (RE) ions. Crystallographic optical symmetry is traditionally relied upon to avoid scattering losses caused by refractive index mismatch at grain boundaries in randomly oriented anisotropic crystals and high-equilibrium RE-solubility is needed to produce sufficient photoluminescence (PL) for amplification and oscillation. These requirements exclude materials such as polycrystalline sapphire/alumina that have significantly superior thermo-mechanical properties (Rs~19,500Wm-1), because it possesses 1) uxiaxial optical properties that at large grain sizes, result in significant grain boundary scattering, and 2) a very low (~10-3%) RE equilibrium solubility that prohibits suitable PL. I present new materials engineering approaches operating far from thermodynamic equilibrium to produce a bulk Nd:Al2O3 medium with optical gain suitable for amplification/lasing. The key insight relies on tailoring the crystallite size to the other important length scales-wavelength of light and interatomic dopant distances and show that fine crystallite sizes result in sufficiently low optical losses and over-equilibrium levels of optically active RE-ions, the combination of which results in gain. The emission bandwidth is broad, ~13THz, a new record for Nd3+ transitions, enabling tuning from ~1050nm-1100nm and/or ultra-short pulses in a host with superior thermal-mechanical figure of merit. Laser grade Nd:Al2O3 opens a pathway for lasers with revolutionary performance.
Several in vitro and in vivo studies have been performed to investigate the potential of Photothermal Therapy (PTT) as a cancer treatment strategy. However, there are still open questions concerning the optimal parameters for generating cavitation bubbles and acoustic shockwaves for increasing the damage to malignant cells, and the primary mechanism for cell damage in PTT is still a matter of debate. This study investigates PTT based on shockwaves from cavitation induced far from the cells, due to laser absorption by gold nanorods (GNR) colloidal solutions in vitro. The effects of laser energy and distance from the cavitation on cell viability is investigated in PC3 prostate cancer cells, and Escherichia coli (E. coli) cells, respectively.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.