X-ray fluorescence computed tomography (XFCT) is a molecular imaging technique of x-ray photons, which can be used to sense different elements or nanoparticle (NP) agents inside deep samples or tissues. XFCT has been an active research topic for many years. However, XFCT has not been a popular molecular imaging tool because it has limited molecular sensitivity and spatial resolution. To further investigate XFCT imaging, we present a benchtop XFCT imaging system, in in which a unique pencil beam x-ray source and a ring of x-ray spectrometers were simulated using GATE (Geant4 Application for Tomographic Emission) software. An accelerated majorization minimization (MM) algorithm with an L1 regularization scheme was used to reconstruct the XRF image of Molybdenum (Mo) NP targets from the numerical measurements of GATE simulations. With a low x-ray source output rate, good target localization was achieved with a DICE coefficient of 83.681%. The reconstructed signal intensity of the targets was found to be relatively proportional to the target concentrations if detector number and placement is optimized. The MM algorithm performance was compared with maximum likelihood expectation maximization (ML-EM) and filtered back projection (FBP) algorithms. In the future, the benchtop XFCT imaging system will be tested experimentally.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.