Multiphoton microscopy (MPM) is a technology that can generate real-time, depth-resolved subsurface images of skin with histologic resolution and sensitivity based on endogenous molecular and chemical contrast. In skin, MPM contrast is derived from second harmonic generation (SHG) of collagen and two-photon excited fluorescence (TPEF) of autofluorescent co-factors NAD(P)H and FAD, elastin, keratin, and melanin. In addition to the specificity provided by the detection of the SHG signal from collagen, MPM can visualize specific skin fluorophores based on their fluorescence lifetime detection. Over the past several years, our group and others have demonstrated the MPM strong potential for a broad range of applications from advancing the understanding of skin biology to non-invasive diagnosis of skin diseases and monitoring therapy effects. However, a routine implementation of this technology in clinical research and practice requires advancing the instrumentation to allow for easier access by clinicians and for more efficient imaging in terms of speed and scanning area. Our group recently introduced benchtop innovations and developed a fast large area multiphoton exoscope (FLAME) that can provide rapid, real-time, depth-resolved images of skin, over macroscopic areas (cm-scale) with microscopic resolution (0.5-1m) and chemical contrast (selective detection of melanin). This presentation will highlight the latest advances in the FLAME development, including its conversion into a compact, portable device, highly optimized for clinical skin imaging with enhanced sensitivity and specificity. The technical abilities of this imaging platform will be demonstrated along with the results of a study that establishes clinical safety and imaging performance in 20 volunteers with normal skin. The results emphasize the significance of macroscopic imaging in the context of skin heterogeneity in terms of pigment distribution and dermal photodamage.
Our group has recently reported on the development of a fast large area multiphoton exoscope (FLAME) for rapid macroscopic imaging with microscopic resolution of human skin. This imaging platform is based on multiphoton microscopy (MPM) that provide label-free, depth-resolved images by using femtosecond laser pulses. Our goal is to use FLAME for in vivo skin imaging to address unmet needs in clinical research and practice of dermatology. This work evaluates the photodamage threshold induced by the excitation laser for the full Fitzpatrick scale of human skin. The optimum laser power and scanning regimes for safe imaging determined by this study will be used for further in vivo clinical studies.
Our group and others have demonstrated the strong potential of the multiphoton microscopy for a broad range of applications from advancing the understanding of skin biology to non-invasive diagnosis of skin diseases and monitoring therapy effects. We have recently reported on a fast large area multiphoton exoscope for rapidly mapping out macroscopic tissue areas with microscopic resolution and enhanced contrast for selective melanin detection. We will describe the technical abilities of this instrument and demonstrate its feasibility for early melanoma diagnosis based on a pilot study on ex-vivo and in-vivo imaging of pigmented lesions suspicious of melanoma in human skin.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.