EuPRAXIA@SPARC_LAB is a new multi-disciplinary user-facility that is currently under construction at the Laboratori Nazionali di Frascati of the INFN in the framework of the EuPRAXIA collaboration. The electron beam will be accelerated by an X-band normal conducting linac followed by a Plasma WakeField Acceleration (PWFA) stage. It will be characterized by a small footprint and it will drive two FEL beamlines for experiments, one in the VUV (50 to 180 nm) and the other in the XUV-soft x-rays (4 to 10 nm) spectral region. As an ancillary beamline, we are also including a betatron source in the x-ray from laser-plasma interaction. We present the status update of our facility.
KEYWORDS: Electron beams, X-rays, Laser systems engineering, X-ray sources, S band, Monte Carlo methods, Optical simulations, Hard x-rays, X-ray imaging, Compton scattering, Particle accelerators
There is a strong demand for small foot-print high-flux hard X-rays machines in order to enable a large variety of science activities and serve a multidisciplinary user community. For this purpose, two compact Inverse Compton Sources (ICSs) are currently being developed in Italy. The most recent one is the Bright and Compact X-ray Source (BriXS) which has recently been proposed to produce very energetic X-rays (up to 180 keV) and high photon flux (up to 1013 photons/s with expected bandwidth of 1-10%). BriXS will be installed in Milan and it will enable advanced large area radiological imaging applications to be conducted with mono-chromatic X-rays, as well as allowing basic fundamental science of matter and health sciences at both pre- and clinical levels. Based on an energy-recovery linac (ERL) scheme and superconducting technology, BriXS will operate in CW regime with an unprecedented electron beam repetition rate of 100 MHz. The second Italian ICS light source is the Southern Europe Thomson back-scattering source for Applied Research (STAR) which is currently installed at the University of Calabria (UniCal). STAR is a compact machine that has been designed to produce monochromatic and tunable, ps-long, polarized X-ray beams in the range 40-140 keV with a photon flux up to 1010 photons/s and energy bandwidth below 10%. The electron beam injector is based on normal-conducting technology in S-Band with a repetition rate up to 100 Hz.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.