Proceedings Article | 18 November 2013
KEYWORDS: Visualization, Tolerancing, Solids, Visual optics, System on a chip, Americium, Statistical analysis, Communication engineering, Colorimetry, Laser optics
Colour-difference formulas are tools employed in colour industries for objective pass/fail decisions of manufactured products. These objective decisions are based on instrumental colour measurements which must reliably predict the subjective colour-difference evaluations performed by observers’ panels. In a previous paper we have tested the performance of different colour-difference formulas using the datasets employed at the development of the last CIErecommended colour-difference formula CIEDE2000, and we found that the AUDI2000 colour-difference formula for solid (homogeneous) colours performed reasonably well, despite the colour pairs in these datasets were not similar to those typically employed in the automotive industry (CIE Publication x038:2013, 465-469). Here we have tested again AUDI2000 together with 11 advanced colour-difference formulas (CIELUV, CIELAB, CMC, BFD, CIE94, CIEDE2000, CAM02-UCS, CAM02-SCD, DIN99d, DIN99b, OSA-GP-Euclidean) for three visual datasets we may consider particularly useful to the automotive industry because of different reasons: 1) 828 metallic colour pairs used to develop the highly reliable RIT-DuPont dataset (Color Res. Appl. 35, 274-283, 2010); 2) printed samples conforming 893 colour pairs with threshold colour differences (J. Opt. Soc. Am. A 29, 883-891, 2012); 3) 150 colour pairs in a tolerance dataset proposed by AUDI. To measure the relative merits of the different tested colour-difference formulas, we employed the STRESS index (J. Opt. Soc. Am. A 24, 1823-1829, 2007), assuming a 95% confidence level. For datasets 1) and 2), AUDI2000 was in the group of the best colour-difference formulas with no significant differences with respect to CIE94, CIEDE2000, CAM02-UCS, DIN99b and DIN99d formulas. For dataset 3) AUDI2000 provided the best results, being statistically significantly better than all other tested colour-difference formulas.